
FaasCache: Keeping Serverless Computing Alive with
Greedy-Dual Caching

Alexander Fuerst
Indiana University Bloomington

USA
alfuerst@iu.edu

Prateek Sharma
Indiana University Bloomington

USA
prateeks@iu.edu

ABSTRACT

Functions as a Service (also called serverless computing) promises

to revolutionize how applications use cloud resources. However,

functions suffer from cold-start problems due to the overhead of

initializing their code and data dependencies before they can start

executing. Keeping functions alive and warm after they have fin-

ished execution can alleviate the cold-start overhead. Keep-alive

policies must keep functions alive based on their resource and usage

characteristics, which is challenging due to the diversity in FaaS

workloads.

Our insight is that keep-alive is analogous to caching. Our caching-

inspired Greedy-Dual keep-alive policy can be effective in reducing

the cold-start overhead by more than 3× compared to current ap-

proaches. Caching concepts such as reuse distances and hit-ratio

curves can also be used for auto-scaled server resource provisioning,

which can reduce the resource requirement of FaaS providers by 30%

for real-world dynamic workloads. We implement caching-based

keep-alive and resource provisioning policies in our FaasCache

system, which is based on OpenWhisk. We hope that our caching

analogy opens the door to more principled and optimized keep-alive

and resource provisioning techniques for future FaaS workloads

and platforms.

CCS CONCEPTS

· Computer systems organization→ Cloud computing.

KEYWORDS

Functions as a Service, Serverless Computing, Cloud Computing,

Caching

ACM Reference Format:

Alexander Fuerst and Prateek Sharma. 2021. FaasCache: Keeping Serverless

Computing Alive with Greedy-Dual Caching. In Proceedings of the 26th ACM

International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS ’21), April 19ś23, 2021, Virtual, USA. ACM,

New York, NY, USA, 15 pages. https://doi.org/10.1145/3445814.3446757

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’21, April 19ś23, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446757

1 INTRODUCTION

Functions as a Service (FaaS) is an emerging and popular cloud com-

puting model, where applications use cloud resources through user

defined łfunctionsž that execute application code [38, 39, 53]. By

handling all aspects of function execution, including resource allo-

cation, cloud platforms can provide a łserverlessž computing model

where users do not have to explicitly provision and manage cloud

resources (i.e., virtualized servers). FaaS employs a fine-grained

pricing model allowing applications to pay for the resources they

use, and provides many other advantages such as near-infinite hor-

izontal scaling. FaaS services are being offered by all major cloud

platforms (such as Amazon Lambda [10], Google Functions [12],

and Azure Functions [11]), and are being used by diverse appli-

cations such as web services, API services, parallel and scientific

computing [23, 31, 37], and in machine learning pipelines [20, 21].

The execution time of each function is typically shortÐin the

range of a few milliseconds to a few seconds. This tight latency re-

quirement and the wide diversity in function characteristics raises

new challenges for FaaS providers. Cloud platforms execute each

function invocation in a virtualized execution environment such as

a container or a virtual machine (VM). Using virtualization tech-

niques, a single physical server can execute many functions con-

currently and safely [55]. Each function invocation entails creating

and launching a container or a VM, and fetching and installing

the necessary libraries and dependencies, before the function itself

can be executed. This łinitializationž phase can take non-negligible

time, and adds to the overall function execution latency observed

by the user. Reducing this function łstartup overheadž is a key

challenge in serverless computing [2, 6, 34, 46].

To mitigate the startup overhead, a common technique is to keep

the execution environment alive or łwarmž for a small duration, so

that future invocations of the same function can run in the already

initialized environment. Keeping functions warm can reduce the

cold-start overheads and overall function latency by more than

5× [43]. However, keeping a container or a VM alive consumes

computing resources on the physical servers, and increases the

resource requirements for hosting FaaS platforms. Thus, while

keep-alive can reduce the effective function execution latency, it

can also reduce the overall system utilization and efficiency.

In this paper, we focus on how diverse FaaS workloads can be

efficiently executed, by developing a new class of resource manage-

ment techniques that balance the fundamental latency vs. utiliza-

tion tradeoff. We argue that keep-alive policies can have a crucial

impact on application performance, and thus must be integrated

into resource allocation and provisioning. Current cloud platforms

and FaaS systems employ simple keep-alive policies. For example,

AWS Lambda will keep functions łwarmž for ∼ 15 − 60 minutes,

386

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1145/3445814.3446757
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3445814.3446757&domain=pdf&date_stamp=2021-04-17

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Alexander Fuerst and Prateek Sharma

and users have to resort to ad-hoc łpollingž techniques to keep

functions warm to avoid the cold-start penalty [1, 5, 17]. Similarly,

OpenWhisk sets a constant time to live (10 minutes) for function

containers.

However, optimized keep-alive policies must balance the over-

head of keeping a function warm with the likelihood that it will be

invoked in the near future. Ideally, the duration of keep-alive should

depend on the function’s characteristics. This is challenging be-

cause of the diverse range of functions with different initialization

overheads, resource footprints (i.e., CPU and memory consump-

tion), and request frequencies.

Our primary insight is that the resource management of functions is

equivalent to object caching. Keeping a function warm is equivalent

to caching an object, and a warm function execution is equivalent to

a cache hit. Terminating a function’s execution environment means

that the next invocation will incur the cold-start penalty, and is

thus equivalent to evicting an object from a cache. The objective is

to keep functions warm such that the effective function latency is

reduced, which is equivalent to caching’s goal of reducing object

access time. By mapping keep-alive to the exhaustively studied field

of caching, we can leverage its principles and techniques, and apply

them to serverless computing.

Specifically, we use and adapt the Greedy-Dual caching frame-

work [26], and develop keep-alive policies based on it. Our policies

are cognizant of the memory footprint, access frequency, initializa-

tion cost, and execution latency of different functions. This caching-

based approach can improve both the function latency and server

utilization compared to the simple keep-alive policies found in

current FaaS platforms.

The caching analogy allows us to use the vast set of caching

algorithms and analytical models, and provides a new approach to

resource provisioning for FaaS platforms. We use hit-ratio curves

to determine the ideal size of servers required for handling FaaS

workloads, and develop a vertical auto-scaling approach that dy-

namically adapts server size based on the workload characteristics.

The dynamic scaling uses proportional control and hit-ratio curves

to minimize both the required server resources, and cold-start over-

heads.

The rise of serverless computing and the challenges posed by its

heterogeneity, workload diversity, and latency requirements, will

require a new class of approaches to FaaS resource management.

We argue that the vast collection of algorithms, analytical models,

practical optimizations, and hard lessons from one of the most

well studied fields in computer science, caching, can be customized

to address many of these challenges. While bespoke solutions to

serverless resource management will continue to be developed,

our intent is to show the equivalence of caching and FaaS, and

to highlight how naturally and easily caching techniques can be

adapted instead. This paper makes an initial exploration into the

world of caching-based approaches for resource management in

serverless computing, and makes the following contributions:

(1) We show the equivalence between caching and function

keep-alive, and develop a family of caching-based keep-alive

policies for reducing function cold-start overhead. We use a

Greedy-Dual based approach that is designed to work even

with the diverse FaaS workloads.

(2) We implement our caching-based techniques in a our sys-

tem, FaasCache, which is based on OpenWhisk. We conduct

extensive trace-driven and empirical analysis of the tradeoffs

of keep-alive techniques under different workload character-

istics based on the Azure FaaS traces [48] and popular FaaS

applications [40].

(3) Our resource provisioning policies use hit-ratio curves to

determine the ideal server configuration (such as memory

size) required to handle different function workloads. Our

proportional-control based dynamic vertical-scaling can ad-

just server resources to reduce the cold-start probability, and

reduce the average server size by more than 30%.

(4) Our experimental results indicate that caching-based keep-

alive can reduce cold-start overheads by 3×, improve

application-latency by 6×, and reduce system load to serve

2× more requests.

2 BACKGROUND

2.1 Function Keep-Alive

Serverless computing is now being provided by all large public cloud

providers, and is increasingly popular way to deploy applications

on the cloud. Functions as a Service (FaaS) can also be realized

on private clouds and dedicated clusters using frameworks such

as OpenWhisk [9], OpenFaas [14], OpenLambda [34], etc. In this

new cloud paradigm, users provide functions in languages such as

Python, Javascript, Go, Java, and others. The functions are executed

by the FaaS platform, greatly simplifying resource management for

the application.

FaaS functions cannot assume that state will persist across in-

vocations, and function definitions must first import and load all

code and data dependencies on each execution. Each function is

run inside a container such as Docker [4], or a lightweight VM

such as Firecracker [15]. By encapsulating all of the function state

and any side-effects, the virtual execution environment provides

isolation among multiple functions, and also allows for concurrent

invocations of the same function. Due to the overhead of starting

a new virtual execution environment (i.e., container or VM), and

initializing the function by importing libraries and other data de-

pendencies, function execution thus incurs a significant łcold-startž

penalty. Table 1 shows the breakdown of initialization time (last col-

umn) vs. the total running time of different FaaS applications, and

we can that the initialization overhead can as much as 80% of the

total running time. Thus, FaaS can result in significant performance

(i.e., total function execution latency) overheads compared to con-

ventional models of execution where applications can reuse state

and do not face the high initialization and cold-start overheads.

Once a container for a function is created and the function fin-

ishes execution, the container can be kept alive instead of imme-

diately terminating it. Subsequent invocations of the function can

then reuse the already running container. This keep-alive mecha-

nism can alleviate the cold-start overhead due to container launch-

ing (which can be ∼ 100 ms).

However, keep-alive is not a panacea for all FaaS latency prob-

lems. Keeping a container alive consumes valuable computing re-

sources on the servers. Specifically, a running container occupies

memory, and łwarmž containers being kept alive in anticipation

387

FaasCache: Keeping Serverless Computing Alive with Greedy-Dual Caching ASPLOS ’21, April 19ś23, 2021, Virtual, USA

Table 1: FaaS workloads are highly diverse in their resource

requirements and running times. The initialization time can

be significant and is the cause of the cold-start overheads,

and depends on the size of code and data dependencies.

Application Mem size Run time Init. time

ML Inference (CNN) 512 MB 6.5 s 4.5 s

Video Encoding 500 MB 56 s 3 s

Matrix Multiply 256 MB 2.5 s 2.2 s

Disk-bench (dd) 256 MB 2.2 s 1.8 s

Web-serving 64 MB 2.4 s 2 s

Floating Point 128 MB 2 s 1.7 s

of future function invocations can reduce the multiplexing and

efficiency of the servers. Thus, we develop keep-alive policies that

reduce the cold-start overhead while keeping the server utilization

high.

Designing general keep-alive policies is challenging due to the ex-

treme heterogeneity in the different function popularities, resource

requirements, and cold-start overheads. For instance, a recent anal-

ysis of FaaS workloads from Azure [48] shows that function inter-

arrival times and memory sizes can vary by more than three orders

of magnitude. This workload heterogeneity magnifies the perfor-

mance vs. utilization tradeoff faced by keep-alive policies, as we

shall describe in the next section. Additionally, FaaS workloads also

show a high temporal dynamism, which requires new approaches

to resource provisioning and elastic scaling, which we also develop.

2.2 Caching

Our answer to solving the twin conundrum of keep-alive and pro-

visioning that is robust to workload heterogeneity and dynamism,

is to use concepts from a related, well-known field with the same

challenges. Caching has a long history of robust eviction algorithms

that use temporal locality such as LRU (Least Recently Used). The

effectiveness of a caching algorithm depends on the workload’s

inter arrival time distribution, the relative popularities of different

objects, and thus many variants of LRU such as LRU-k [47], seg-

mented LRU [25], ARC [44], and frequency based eviction such

as LFU [30], are widely used in caching systems. Because func-

tions show a lot of diversity in their memory footprints, and since

keep-alive is primarily constrained by server memory, we seek to

use size-aware caching methods. While conventional caching al-

gorithms and analytical models largely deal with constant-sized

objects, many size-aware caching policies have been developed for

web-pages and data [19]. In particular, we use the Greedy-Dual [58]

online caching framework that deals with objects with different

eviction costs, that are determined based on size and other factors.

The Greedy-Dual family of eviction algorithms for non-identical

objects can be extended in many ways. We use a common variant,

Greedy-Dual-Size-Frequency [26ś28], which considers the size and

frequency of objects.

Caching has a rich collection of analytical and modeling tech-

niques to determine the efficacy of caches for different workloads.

Hit (or miss) ratio curves are widely used for cache sizing to achieve

a target performance, and for understanding and modeling cache

performance. Hit-ratio curves can be constructed both in an offline

and online manner, using techniques involving reuse distances [60],

eviction times [35], Che’s approximation [24], footprint descrip-

tors [51], and estimation techniques such as SHARDS [54], coun-

terstacks [57], etc.

3 KEEP-ALIVE TRADEOFFS

In this section, we first present an empirical analysis of cold-start

overheads of common serverless applications, followed by the trade-

offs in keep-alive policies.

System model.We assume that each function invocation runs in

its own container. A FaaS platform may use a cluster of physical

servers, and forward the function invocation requests to differ-

ent servers based on some load-balancing policy. Our aim is to

investigate general techniques that are independent of cluster-level

load-balancing, and we therefore focus on server-level policies. Even

on a single server, a function can have multiple independent and

concurrent invocations, and hence containers. Each function has its

own container disk-image and initialization code, and thus contain-

ers cannot be used by different functions. A function’s containers

are nearly identical in their initialization overheads and resource

utilization, since they are typically running the same function code.

When a function finishes execution, its container may be termi-

nated, or be kept alive and łwarmž for any future invocations of

the same function. At any instant of time, each container is either

running a function, or is being kept alive/warm. Thus, server re-

sources are consumed by running containers, and containers being

kept alive in anticipation for future invocations.

Keeping functions alive/warm presents a fundamental tradeoff:

it can reduce application-latency and CPU and I/O overhead, but

it increases memory pressure. Nevertheless, recycling the execu-

tion environment and keeping function containers alive is a useful

performance optimization that is supported by large public cloud

platforms [7, 8, 13]. In some scenarios, server resources may also

be shared with long-running containers and VMs. In such cases,

function keep-alive also influences the performance of other co-

located applications and services, and the overall cloud efficiency.

Therefore, understanding and optimizing this tradeoff is important,

and we develop caching-based dynamic resource provisioning poli-

cies in Section 5. Our goal is to allow FaaS operators to understand

the benefits of different levels of aggressive keep-alive policies.

Cold-start overheads in OpenWhisk. In order to understand

the performance and latency implications of function cold-starts,

we investigate the chain of events necessary to run function code in

a popular FaaS platform, OpenWhisk [9]. A timeline of a function

invocation request for a TensorFlow machine learning inference

task is shown in Figure 1. The figure shows the major sources of

cold-start overhead: from request arrival to the actual function

execution. OpenWhisk first checks whether the function can be

served from the pool of warmed containers it maintains, and if no

container is found, a Docker container is launched, and the run-

time for the function is initialized: which comprises of OpenWhisk

and Python runtime initialization, as well as any specific explicit

function initialization provided by the application. The total com-

pulsory overhead, from the request arrival to the actual function

execution, is significant: up to 2.5 seconds are spent loading all

388

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Alexander Fuerst and Prateek Sharma

Akka, Docker

startup

0.45s 1.5s 0.76s

Explicit init Function Execution

Container Pool Check

8 seconds

1.9s 4.3s

OW runtime init

Figure 1: Timeline of function execution and sources of cold-

start delay in OpenWhisk for an ML inference application.

1 #Initialization code
2 import numpy as np
3 import tensorflow as tf
4
5 m = download_model('http://model_serve/img_classify.pb')
6 session = create_tensorflow_graph(m)
7
8 def lambda_handler(event, context):
9 #This is called on every function invocation
10 picture = event['data']
11 prediction_output = run_inference_on_image(picture)
12 return prediction_output

Figure 2: Initializing functions by importing and download-

ing code and data dependencies can reduce function latency

by hiding the cold-start overhead.

runtime dependencies, before the user-provided initialization and

actual event handling code can begin execution.

Function Initialization. Function initialization refers to function-

specific code for downloading and resolving code and data de-

pendencies, which can be run before actual function execution

(explicit-init component in Figure 1). For example, this can be used

for downloading data dependencies ahead of time such as large

neural network models for inference, or for runtime initialization

such as downloading and importing package dependencies (e.g.,

Python packages). An example of function initialization is shown

in Figure 2, which shows a pseudo-code snippet of a function that

performs machine learning inference on its input. For ML inference,

the function downloads an ML model and initializes the Tensor-

Flow ML framework (lines 5 and 6). If the function’s container is

kept alive, then invocations of the function do not need to run the

expensive initialization code (lines 2ś6).

Workload Diversity and Dynamism. Designing keep-alive poli-

cies is not trivial due to the highly diverse and expanding range of

applications that are using FaaS platforms. Conventionally, FaaS

has been used for hosting web services, which is attractive because

of the pay-per-use properties. Event handling functions for web

responses typically have a small memory footprint but require

low execution latency. Increasingly, FaaS is also being used for

łheavyž workloads with high memory footprint and large initializa-

tion overheads such as highly parallel numerical computing (such

as matrix operations [38], scientific computing [49], and machine

learning [16]. The diversity of FaaS applications also results in

a wide range of function memory footprints, running times, and

initialization times, as seen in Table 1. Keep-alive policies must

therefore balance the resource footprint of the containers with the

benefits of keeping containers aliveÐand do so in manner that is

applicable across a wide range of applications.

Furthermore, FaaS workloads show a high degree of dynamism

and temporal effects. The Azure function [48] trace shows sharp

diurnal effects: the function arrival rate is about 2× higher during

the peak periods compared to the average. Function workloads

are also heavy-tailed: a few łheavy hittingž functions are invoked

much more frequently than others or consume a larger amount of

computing resources, often by 2 or 3 orders of magnitude.

3.1 Policy Goals and Considerations

The primary goal of keep-alive is to reduce the initialization and

cold-start latency, by keeping functions alive for different dura-

tions based on their characteristics. Because servers run hundreds

of short lived functions concurrently, keep-alive policies must be

generalizable and yield high server utilization. Functions can have

vastly different characteristics, and keep-alive polices must work

efficiently in highly dynamic and diverse settings. We use the fol-

lowing characteristics of functions for keep-alive policies.

The initialization time of functions can vary based on the code

and data dependencies of the function. For example, a function

for machine learning inference may be initialized by importing

large ML libraries (such as TensorFlow, etc.), and fetching the ML

model, which can be hundreds of megabytes in size and take several

seconds to download. Functions also differ in terms of their total

running time, which includes the initialization time and the actual

execution time. Again, functions for deep-learning inference can

take several seconds, whereas functions for HTTP servers and

microservices are extremely short-lived (few milliseconds). The

resource footprint comprises of the CPU, memory, and I/O use,

and also differs widely based on the application’s requirements.

Finally, functions have different frequencies and invocation rates.

Some functions may be invoked several times a second, whereas

other functions may only be invoked rarely (if they are used to

serve a very low-traffic web-site, for instance).

Because server resources are finite, it is important to prioritize

functions which should be kept alive, based on the aforementioned

characteristics. A function which is not popular and is unlikely to

be called again in the near future, sees little benefits from keep-alive,

and wastes server memory. Similarly, the resource consumption

of the functions is also important: since keeping large-footprint

functions alive is more expensive than smaller functions, smaller

functions should be preferred and kept alive for longer. Finally, func-

tions can also be prioritized based on their initialization overhead,

since it is effectively wasted computation.

The problem of designing keep-alive policies is complicated

by the fact that functions may have vastly different keep-alive

priorities for the different characteristics. Consider a function with

a large memory footprint (like those used in ML inference), high

initialization overhead, and a low popularity. Such a function should

have a low keep-alive priority due to its size, high priority due

to large initialization overhead, and a low priority due to its low

popularity. Thus, keep-alive policies must carefully balance all the

different function characteristics and prioritize them in a coherent

manner.

Current FaaS systems have shirked from this challenge and use

primitive keep-alive policies that are not designed with the diversity

and dynamism in mind. FaaS frameworks such as OpenWhisk, keep

389

FaasCache: Keeping Serverless Computing Alive with Greedy-Dual Caching ASPLOS ’21, April 19ś23, 2021, Virtual, USA

all functions alive for a constant period of time (10 minutes). This

is agnostic to different function characteristics such as resource

footprint and initialization overheads, and only loosely captures

popularity. More principled approaches are needed, which we pro-

vide next.

4 CACHING-BASED KEEP-ALIVE POLICIES

Formulating a keep-alive policy that balances priorities based on

all competing characteristics of functions seems daunting.

The central insight of this paper is that keeping functions alive

is equivalent to keeping objects in a cache.

Keeping a function alive reduces its effective execution (or response)

latency, in the same way as caching an object reduces its access

latency. When all server resources are fully utilized, the problem of

which functions not to keep alive is equivalent to which objects to

evict from the cache. The high-level goal in caching is to improve

the distribution of object access times, which is analogous to our

goal of reducing the effective function latencies.

This caching analogy provides us a framework and tools for

understanding the tradeoffs in keep-alive policies, and improving

server utilization. Caching has been studied in wide range of con-

texts and many existing caching techniques can be applied and

used for function keep-alive. Our insight is that we can use classic

observations and results in object caching to formulate equivalent

keep-alive policies that can provide us with well-proven and sophis-

ticated starting point for understanding and improving function

keep-alive.

In the rest of this section, we will show how cache eviction al-

gorithms can be adapted to keep-alive policies. Caching systems

typically seek to improve hit ratios (the fraction of accesses that are

cache hits). However, focusing on hit-rates alone does not necessar-

ily translate to improved system level performance, if the objects

have different sizes and miss costs. For instance, caching all small

objects may yield a high hit ratio, but the infrequent misses of larger

objects results in higher miss costs and poor system throughput.

Therefore, we will also focus on minimizing the overall cold-start

overhead, which is equivalent to the łbyte hit ratiož used in caching

systems.

4.1 Greedy-Dual Keep-Alive Policy

While many caching techniques can be applied to the function

keep-alive policies, we now present one such caching-inspired pol-

icy that is simple and yet captures all function characteristics and

their tradeoffs. Our GDSF policy is based on Greedy-Dual-Size-

Frequency object caching [26], which was designed for caches with

objects of different sizes, such as web-proxies and caches. Classical

caching policies such as LRU or LFU do not consider object sizes,

and thus cannot be completely mapped to the keep-alive problem

where the resource footprint of functions is an important charac-

teristic. As we shall show, the Greedy-Dual approach provides a

general framework to design and implement keep-alive policies that

are cognizant of the frequency and recency of invocations of dif-

ferent functions, their initialization overheads, and sizes (resource

footprints).

Fundamentally, our keep-alive policy is a function termination

policy, just like caching focuses on eviction policies. Our policy is re-

source conserving: we keep the functions warm whenever possible,

as long as there are available server resources. This is a departure

from current constant time-to-live policies implemented in FaaS

frameworks and public clouds, that are not resource conserving,

and may terminate functions even if resources are available to keep

them alive for longer.

Our policy decides which container to terminate if a new con-

tainer is to be launched and there are insufficient resources avail-

abile. The total number of containers (warm + running) is con-

strained by the total server physical resources (CPU and memory).

We compute a łpriorityž for each container based on the cold-start

overhead and resource footprint, and terminate the container with

the lowest priority.

Priority Calculation. The GDSF keep-alive policy is based on

Greedy-Dual caching [58], where objects may have different evic-

tion costs. For each container, we assign a keep-alive priority, which

is computed based on the frequency of function invocation, its

running time, and its size:

Priority = Clock +
Freq × Cost

Size
(1)

On every function invocation, if a warm container for the func-

tion is available, it is used, and its frequency and priority are up-

dated. Reusing a warm container is thus a łcache hitž, since we

do not incur the initialization overhead. When a new container is

launched due to insufficient resources, some other containers are

terminated based on their priority orderÐlower priority contain-

ers are terminated first. We now explain the intuition behind each

parameter in the priority calculation:

Clock is used to capture the recency of execution. We maintain a

łlogical clockž per server that is updated on every eviction. Each

time a container is used, the server clock is assigned to the container

and the priority is updated. Thus, containers that are not recently

used will have smaller clock values (and hence priorities), and will

be terminated before more recently used containers.

Containers are terminated only if there are insufficient resources

to launch a new container and if existing warm containers cannot

be used. Specifically, if a container 𝑗 is terminated (because it has

the lowest priority), then Clock = Priority𝑗 . All subsequent uses of

other, non-terminated containers then use this clock value for their

priority calculation. In some cases, multiple containers may need

to be terminated to make room for new containers. If 𝐸 is the set of

these terminated containers, then Clock = max𝑗 ∈𝐸 Priority(j)

We note that the priority computation is on a per-container basis,

and containers of the same function share some of the attributes

(such as size, frequency, and cost). However, the clock attribute is

updated for each container individually. This allows us to evict the

oldest and least recently used container for a given function, in

order to break ties.

Frequency is the number of times a given function is invoked. A

given function can be executed by multiple containers, and fre-

quency denotes the total number of function invocations across all

of its containers. The frequency is set to zero when all the contain-

ers of a function are terminated. The priority is proportional to the

frequency, and thus more frequently executed functions are kept

alive for longer.

390

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Alexander Fuerst and Prateek Sharma

Cost represents the termination-cost, which is equal to the total

initialization time. This captures the benefit of keeping a container

alive and the cost of a cold-start. The priority is thus proportional

to the initialization overhead of the function.

Size is the resource footprint of the container. The priority is in-

versely proportional to the size, and thus larger containers are

terminated before smaller ones. In most scenarios, the number of

containers that can run is limited by the physical memory availabil-

ity, since CPUs can be multiplexed easily, and memory swapping

can result in severe performance degradation. Thus for ease of ex-

position and practicality, we consider only the container memory

use as the size, instead of a multi-dimensional vector.

We can also use multi-dimensional resource vectors to represent

the size, in which case we convert them to scalar representations

by using the existing formulations from multi-dimensional bin-

packing. For instance, if the container size is d, then the size can be

represented by the magnitude of the vector | |d| |. Other size repre-

sentations can also be used. A common technique is to normalize

the container size by the physical server’s total resources (a), and

then compute the size as
∑

𝑗
𝑑 𝑗

𝑎 𝑗
where 𝑑 𝑗 , 𝑎 𝑗 are the container size

and total resources of a given type (either CPU, memory, I/O) re-

spectively. Cosine similarity between d and a can also be used, as

is widely used in multi-dimensional bin-packing.

FaaS-specific considerations. The application of cache eviction

algorithms to FaaS keep-alive is fairly straight-forward. The various

inputs Greedy-Dual (memory size, cold-start time, frequency) are

available once a function has finished execution, and thus the keep-

alive policy is completely online. Our policy calculates eviction

priorities at the function level, but evicts at the container level.

Recall that a particular function may have multiple containers

associated with concurrent function invocations. We assume that

all containers of a function are identical, i.e., they have the same

initialization cost, footprint, etc. Thus, any one of the identical

containers can be evicted.

4.2 Other Caching-Based Policies

The Greedy-Dual approach also permits many specialized and sim-

pler policies. For instance, allowing for different parameters in

Equation 1 results in different caching algorithms. If only the ac-

cess clock is used as a priority, and other parameters are ignored,

then we get LRU, with its ease of analysis and generality which

has been well established with over half a century of empirical

and analytical work. Using only frequency yields LFU. Similarly, a

size aware keep-alive policy can be obtained by using 1/size as the

priority, which would be useful in scenarios where memory size is

at a premium.

Other size-aware online algorithms with tight online theoretical

guarantees can also be applied. We also implement the LAND-

LORD [59] algorithm, which can be understood as a variant of

the Greedy-Dual approach. Landlord also considers the frequency,

size and initialization cost of functions. When the server is full

and some container is to be evicted, a łrentž is charged from each

function based on its size and initialization cost (specifically, it is

equal to min initialization cost
size . This subtly differs from Greedy-Dual-

Size-Frequency: the decrease in priority is computed based on the

state of all the cached containers, and not independently applied.

Upon a function invocation, its containers get a łcreditž, and their

priority is set to their initialization cost. The containers with the

lowest credits are evicted. Landlord has appealing and well-proven

properties of its online performance: its competitive ratio (the per-

formance compared to an optimal offline algorithm that knows

future requests) has been well analyzed [59].

5 SERVER PROVISIONING POLICIES

Resource provisioning, i.e., determining the size and capacity of the

servers for handling FaaS workloads, is a fundamental problem in

serverless computing. In this section, we develop techniques that

allocate the appropriate amount of resources to servers based on the

characteristics of the function workloads. Resource provisioning

policies must consider the rate of function invocations, the resource

footprints of the functions, and the inter-arrival time between func-

tion invocations. To handle the interplay and tradeoffs between

these factors, we use similar principles for provisioning that we

used for developing our keep-alive policies. In case FaaS work-

loads are co-located with other applications such as long-running

containers and VMs, our provisioning policies can also be used to

determine the resource allocation of the combined running and

warm function pool.

The fundamental challenge underlying resource provisioning for

FaaS workloads is the performance vs. resource allocation tradeoff.

Running a workload on large servers/VMs provides more resources

for the keep-alive cache, which reduces the cold-starts and improves

the application performance. However, we must also be careful

to not overprovision, since it leads to wasted and underutilized

resources. Additionally, since function workload can be dynamic,

resource provisioning must be elastic, and be able to dynamically

scale up or down based on the load. We therefore present a static

provisioning policy that determines the server memory size for

a given function workload, and then develop an elastic-scaling

approach for handling workload temporal dynamics.

5.1 Static Provisioning

In Section 2, we have seen how keeping function containers warm

in a keep-alive cache can help mitigate the cold-start overheads. The

effectiveness of any keep-alive policy depends on the size of this

keep-alive cache, and thus the server resources available, i.e., the

server size. Our static provisioning policy thus selects a server size

for handling a given workload. We want to optimize the resource

provisioning to avoid over and under provisioning, both of which

are detrimental to cost and performance respectively.

Having established that keep-alive policies are equivalent to

cache eviction in the previous section, we now extend the use of the

caching analogy further, to develop a caching-based provisioning

approach. We claim that the performance vs. resource availability

tradeoff of serverless functions can be understood and modeled

using cache hit (or miss) ratio curves. Hit-ratio curves are widely

used in cache provisioning and modeling, since they give insights

into cache performance at different sizes. Once a hit-ratio curve

is obtained, it is used to provision the cache size based on system

requirements. A common approach is to size the cache based on

a target hit-ratio (say, 90%). Alternatively, the slope of a hit-ratio

curve can be understood to be the marginal utility of the cache,

391

FaasCache: Keeping Serverless Computing Alive with Greedy-Dual Caching ASPLOS ’21, April 19ś23, 2021, Virtual, USA

and a cache size that maximizes this marginal utility is picked. This

entails choosing a cache size which corresponds to the inflection

point of the hit-ratio curve.

Hit-ratio Curve Construction.We use a function hit-ratio curve

for determining the percentage of warm-starts at different server

memory sizes. The hit-ratio curve is constructed by using the notion

of re-use distances.A function’s reuse-distance is defined as the total

(memory) size of the unique functions invoked between successive

invocations of the same function. For example, in the request reuse

sequence of ABCBCA, the reuse distance of function A is equal to

size(B) + size(C). The distribution of these reuse distances can

yield important insights into the required cache size. If the cache

size is greater than the reuse distances, then there will be no cache

misses. This can be generalized to find the hit-ratio at cache size 𝑐 :

Hit-ratio(𝑐) =

𝑐∑

𝑥=0

𝑃 (Reuse-distance = 𝑥), (2)

where the reuse distance probability is obtained by scanning the en-

tire input function workload for all reuse sequences. Conveniently,

the hit-ratio is the CDF (cumulative distribution function) of the

reuse distances, which can be empirically determined based on all

the computed reuse distances. We show one such hit-ratio curve

constructed with reuse distances, for a representative sample of the

Azure function workload in Figure 3. We can see that the hit-ratio

curve of functions also follows the classic long-tailed behavior: the

hit-ratio steeply increases with cache size up to an inflection point,

after which we see diminishing returns.

This technique and observation informs our provisioning policy.

We construct a hit-ratio curve based on reuse distances, and size

the server’s memory based on the inflection point. Alternatively,

we can set a target hit ratio (say, 90%), and use that to determine the

minimum memory size of the server. Finding the reuse-distances

for an entire trace can be an expensive, one-time operation, and

takes 𝑂 (𝑁 ∗𝑀) time where N is the number of invocations and M

is the number of unique functions. However, sampling techniques

such as SHARDS [54] can be applied to drastically reduce the over-

head, making this a practical and principled technique for resource

provisioning.

Limitations of the Caching Analogy. The error in hit-ratios with

the reuse-distance approach in Figure 3 highlights an important

facet where caching does not fully map to FaaS. The main difference

is due to the limitations on the concurrent execution of functions:

caching deals with unique objects, whereas there can be multiple

containers for a function. At lower cache sizes, a high miss rate

results in higher server load, and hence a higher number of dropped

requests, that the classical reuse-distance approaches do not cap-

ture. If all warmed containers of a function are in use, then a new

invocation results in a cold-startÐwhich would be counted as a

cache łhitž. Thus at lower sizes, the real hit-ratio is lower than the

ideal. At larger sizes, multiple containers corresponding to concur-

rent invocations of a function will be present, which results in a

deviation from the hit-rate curve. Reconciling these differences is

an interesting area of future work. However, we note that hit-ratio

curves are only used for coarse-grained allocation, and small de-

viations result in slight under or over provisioning. Moreover, our

dynamic allocation policy described next can reduce these errors

using proportional control.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Cache Size (GB)

0.0

0.2

0.4

0.6

0.8

1.0

Hi
t R

at
io

Full Graph

Reuse Dist. GreedyDual

Figure 3: Hit ratio curve using reuse distances show slight

deviations from the observed hit ratios due to dropped re-

quests at lower sizes, and concurrent executions at higher

sizes.

5.2 Elastic Dynamic Scaling

We also use the hit-ratio curve approach for a dynamic auto-scaling

policy that adjusts the server size based on workload requirements.

We assume that the FaaS server backend is running functions as

containers either inside a virtual machine (VM), or is sharing the

physical server with other cloud applications. In either case, it is

important to be able to reclaim unused keep-alive cache resources

and reduce its footprint, in order to increase the efficiency of the

cloud platform.

Our vertical elastic scaling policy is simple and is intended to

demonstrate the efficacy of a general caching based approach. We

implement a proportional controller [3] which periodically adjusts

the VM memory size based on the rate of cold-starts. Thus during

periods of low rate of function invocations (i.e., arrival rate), the

cache size can be reduced. This may increase the miss-ratioÐbut

we care about the cold-starts (i.e., misses) per second, which is

product of miss-ratio and invocations per second. Our controller

monitors the arrival and cold-start rate, and uses the hit-ratio curve

to decrease or increase VM size dynamically. We use VM resource

deflation [50] to shrink or expand the VM by using a combination

of hypervisor level page swapping, or guest-OS memory hot-plug

and unplug.

Assume that we have a target miss speed (number of cold-

starts/misses per second). For instance, this target value can be

a product of the desired hit-ratio, ℎ, and the average function ar-

rival rate for the entire workload trace, 𝜆. Periodically, we monitor

the exponentially smoothed arrival rate 𝜆, and the observed miss

speed. Our proportional controller adjusts the cache size in order to

reduce the difference between the actual vs. target miss speed. This

error is used to compute the new miss rate,𝑚, and the associated

cache size 𝑐 ′ as follows:

HR(𝑐 ′) = 1 −𝑚 = 1 − ℎ
𝜆

𝜆
(3)

392

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Alexander Fuerst and Prateek Sharma

ContainerPool

Greedy-Dual Keep-Alive

Provisioning Controller

OpenWhisk Invoker (VM)

Deflate

Incoming
Requests

Figure 4: FaasCache system components. We build on Open-

Whisk and augment it with new keep-alive policies and a

provisioning controller.

The new cache size 𝑐 ′ is then determined by inverting the hit-rate

function HR. Our vertical scaling controller is designed for coarse-

grained VM size adjustments, and only tracks the workload at time

granularities of several minutes. Our intent with this policy is to not

be overly aggressive with the capacity changes, but only to capture

the coarse diurnal effects. Therefore, we use a large error deadband:

the cache size is only updated if the error is more than 30%. Finally,

the memory scaling can also be combined with cpu auto-scaling

based on the function arrival rate, using classical predictive and

reactive auto-scaling techniques found in web-clusters [32].

Online adjustments. Our policies rely on the aggregate function

characteristics, which is used for constructing the hit-ratio curve.

Once done, the traffic intensity (invocations per second) can change.

We primarily assume that the probability distribution of function

characteristics such as their frequency and size, does not signifi-

cantly change. However, our dynamic scaling policy can adjust to

changes in the traffic intensity (invocations per second). In other

words, we assume that the future traffic is going to be similar to

the past, which is the basis of the timeseries-forecasting based poli-

cies (such as in [48]), and is the fundamental principle underlying

caching in general. Our provisioning policies are not completely

online, since they have a preparation phase for constructing the

hit-rate curves. A łdriftž in function characteristics is fixed by peri-

odically updating the hit-ratio curve, which we currently do once

per week. Online hit-ratio curves can also be constructed, and

adapting techniques such as [61] is part of our future work.

6 IMPLEMENTATION

We have implemented the keep-alive and the provisioning policies

as part of our FaasCache framework built on top of OpenWhisk

(Figure 4).

Keep-Alive. FaasCache replaces the default OpenWhisk TTL-based

keep-alive policy with the Greedy-Dual-Size-Frequency approach.

For each initialized container, we assign andmaintain the keep-alive

prioritized ContainerPool, which is only a 100-line Scala modifica-

tion. Each invocation of a function (OpenWhisk action) in Contain-

erPool records the launch time and when results are returned.

If the container was prewarmed before the invocation arrived,

we record it as the function’s warm runtime. For new functions, the

initialization overhead is caputred and assumed to be the worst-case

runtime until a warmed invocation is recorded. In the subsequent

invocations, the initialization overhead is computed by subtract-

ing the cold from the warm time. The function’s frequency and

clock value are updated with each request. If the last container of

a function is evicted, its cold and warm runtimes are stored and

used to compute priority for its future invocations. To preserve the

invocation fast-path, the ContainerPool is not kept sorted by prior-

ity. Instead, it is sorted by priorities only during evictions, when

the lowest priority container(s) are terminated. We batch eviction

operations to optimize the slow-path: we evict multiple containers

to reach a certain free resource threshold (1000 MB is the current

default).

In the future, we intend to implement a similar design that is

found in the Linux kernel page eviction. A separate thread (analo-

gous to kswapd) can be used to periodically sort the containerpool

list and asynchronously evict containers, so that eviction is not on

the critical path.

Provisioning. For the static provisioning, we compute the reuse

distance distribution for a given workload trace, and assume sta-

tionarity Ð that it will be applicable on similar future workloads.

We compute the reuse distances conventionally, by examining all

reuse-sequences. The dynamic provisioning controller runs peri-

odically (every 10 minutes), to deflate or inflate the VM size, if the

cold start rate deviates from the target significantly (by more than

30%). When the VM has to be shrunk, we use cascade deflation [50].

We shrink the ContainerPool first, and reclaim the free memory

using guest OS-level memory hot-unplug and hypervisor-level page

swapping.

Keep-alive Simulator.We have implemented a trace-driven dis-

crete event simulator for implementing and validating different

keep-alive policies. Our simulator is written in Python in about

2,000 lines of code, and implements the various Greedy-Dual vari-

ants. It allows us to determine the cache hit ratios and the cold-start

overheads for different workloads and memory sizes. Additionally,

it also implements the static and dynamic provisioning policies for

adjusting server size.

7 EXPERIMENTAL EVALUATION

We now present the experimental evaluation of our caching-based

keep-alive and provisioning techniques by using function workload

traces and serverless benchmarks. Our goal is to investigate the

effectiveness of the these techniques under different workload and

system conditions.

Setup, Workloads, and Metrics. For evaluating different keep-

alive performance with different workload types, we use different

trace samples from the Azure Function trace [48], which contains

execution times, memory sizes, and invocation-timestamps formore

than 50,000 unique functions. Since our goal is to examine perfor-

mance at a server level, we use smaller samples of this trace for

realistic server sizes, and replay them in our discrete-event keep-

alive simulator. This also allows us to examine the behavior with

different types of workloads, which is important because our keep-

alive policies are designed to be general and workload-agnostic. We

use the following three trace samples (more details in the Table 2):

RARE: A random sample of 1000 of the rarest, most infrequently

invoked functions. These functions will usually result in cold starts

under a classic 10 minute TTL.

REPRESENTATIVE: A sample of 400 functions, sampled from

each quartile of the dataset based on frequencyÐyielding a more

representative sample with higher function diversity.

RANDOM: A random sample of 200 functions.

393

FaasCache: Keeping Serverless Computing Alive with Greedy-Dual Caching ASPLOS ’21, April 19ś23, 2021, Virtual, USA

20 40 60 80
Memory (GB)

0.0

0.5

1.0

1.5

2.0

%
 In

cr
ea

se
 in

 E
xe

cu
tio

n
Ti

m
e

GD
TTL
LRU
HIST
SIZE
LND
FREQ

(a) Representative functions.

20 40 60 80
Memory (GB)

0

2

4

6

8

10

%
 In

cr
ea

se
 in

 E
xe

cu
tio

n
Ti

m
e

(b) Rare functions.

10 20 30 40 50
Memory (GB)

0.0

0.5

1.0

1.5

%
 In

cr
ea

se
 in

 E
xe

cu
tio

n
Ti

m
e

(c) Random sampling.

Figure 5: Increase in execution time due to cold-starts for different workloads derived from the Azure function trace.

20 40 60 80
Memory (GB)

0

10

20

30

40

50

%
 C

ol
d

St
ar

ts

GD
TTL
LRU
HIST
SIZE
LND
FREQ

(a) Representative functions.

20 40 60 80
Memory (GB)

0

10

20

30

40

%
 C

ol
d

St
ar

ts

(b) Rare functions.

10 20 30 40 50
Memory (GB)

0

5

10

15

%
 C

ol
d

St
ar

ts

(c) Random sampling.

Figure 6: Fraction of cold-starts is lower with caching-based keep-alive.

Table 2: Size and inter-arrival time (IAT) details for the

Azure Function workloads used in our evaluation.

Trace Num Invocations Reqs per sec Avg. IAT

Representative 1,348,162 190 /s 5.4 ms

Rare 202,121 30 /s 36 ms

Random 4,291,250 600 /s 1.8 ms

The FaasCache system is evaluated in Section 7.2. Functions from

the FunctionBench [40] suite are used for generating a realistic

workload. A single server with 250 GB RAM and 48-core Intel

Xeon Platinum 2.10 GHz CPUs is used for running all functions.

The server is running modified OpenWhisk (i.e., FaasCache), and

Ubuntu 16.04.5.

Adapting the Azure Functions Trace. The format of the original

Azure Function trace [48] requires some additional pre-processing

and extrapolation for generating a workload. The full dataset con-

sists of 14 days of function invocations, and billions of individual

invocations. We use the first day’s data, and do not consider func-

tions that are never reused (i.e., with less than two invocations).

The original trace provides memory consumption at the appli-

cation levelÐwith the application made up of multiple functions.

Therefore, we evenly split the memory allocation between all func-

tions in an application. The dataset provides invocations in minute-

wide buckets. When injecting/replaying the workload, if there is

only one invocation in a minute-bucket, it is injected at the be-

ginning of the minute. For multiple invocations, they are equally

spaced throughout the minute.

The cold-start overhead of each function is estimated as maximum

- average runtime, and the execution times provided in the dataset

are used for this computation. The dataset does not account for

certain important sources of cold-start overheads such as execu-

tion environment creation (e.g., Docker). This unfortunately un-

derestimates the cold-start overheads. However, because it applies

uniformly to all functions, it preserves the relative performance of

the different keep-alive policies, and does not affect the cache hit

ratios.

We are interested in two metrics: the cold-start ratio; and the av-

erage increase in the execution time due to cold-starts. The increase

in execution time is computed by averaging across all function

invocations.

7.1 Trace-Driven Keep-Alive Evaluation

In this subsection, we use the Azure function traces to evalaute

different keep-alive policies in our discrete-event simulator. We

compare all caching-based variants against the default keep-alive

policy in OpenWhisk (10 minute TTL). When the server is full, this

TTL policy evicts containers in an LRU order. We also evaluate

different Greedy-Dual variants: GD is our GDSF policy described

in Section 4.1. The others are the caching-based variants described

in Section 4.2: LND is Landlord, and FREQ is LFU.

394

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Alexander Fuerst and Prateek Sharma

We also compare against the histogram based keep-alive policy

in [48], which is the state of the art technique. We have reproduced

this policy (HIST) from the details in the paper, and have imple-

mented it in a łbest-effortž manner without any knowledge of the

optimizations in the actual implementation. This is effectively a

łTTL+Prefetchingž policy: it uses a histogram of inter-arrival times

to predict future function invocations and eagerly evict warm func-

tions. It uses timeseries-forecasting to capture temporal locality,

but does not consider the other function characteristics such as

function size and initialization cost. The IAT, computed by taking a

function’s execution time plus the subsequent idle time, between

each actual invocation is recorded in minute granularity buckets,

tracking up to four hours between executions. The policy uses

ARIMA modeling for those invocations that fall outside this four

hour window, we chose not to implement this specific feature due

to its complexity, and the fact that it accounted for a minor frac-

tion (~0.56%) of all invocations. From these buckets, a function’s

coefficient of variation (CoV) is calculated using Welford’s online

algorithm [56]. When the function’s IAT is predictable (CoV ≤ 2),

the function’s historical/customized preload and TTL time are used.

Otherwise the function has a generic TTL of two hours. When an

invocation is anticipated, it is brought into memory and kept there

until its TTL expires. A function is evicted when the policy predicts

it will not have an invocation in the near future.

The increase in execution time for different traces and for dif-

ferent cache sizes is shown in Figure 5. The increase in execution

time is the cold-start overheads averaged across all invocations of

every function, and captures the user-visible response-time.

For the representative trace (Figure 5a), Greedy-Dual reduces

the cold-start overhead by more than 3× compared to TTL for a

wide range of cache sizes (15ś80 GB). Interestingly, it is able to

achieve a low overhead of only 0.5% at a much smaller cache size

of 15GB, compared to other variants, which need 50 GB to achieve

similar resultsÐa reduction of cache size by more than 3×. For rare

functions (Figure 5b), caching-based approaches such as LRU reduce

the cold-start overhead by 2× compared to TTL for cache sizes of

40ś50 GB. This shows that for rare functions, recency is a more

pertinent characteristic, and the complex four-way tradeoff used in

Greedy-Dual is not necessarily ideal in all workload scenarios. For

this workload, the HIST policy outperforms TTL, as reported in [48].

However, it results in 50% higher cold-start overhead compared to

caching-based approaches. Furthermore, because HIST uses only

inter-arrival times, it is unable to perform well with heterogeneous

representative workloads (Figure 5a).

Finally, the randomly sampled trace has a large number of in-

frequent functions because of the low probability of selecting the

heavy-hitting functions. In Figure 5c, the recency component again

dominates, and we see LRU outperforming other variants. The

equivalence of LRU and TTL-based caching for rare objects has

been noted [18, 36], which explains their similar behavior seen in

Figure 5c.

Result: For representative, diverse workloads, our GD policy can

improve the performance and shrink cache sizes by up to 3×. For more

homogeneous workloads, LRU can outperform current TTL-based

approaches by 2×.

We can observe from Figure 5 that the increase in execution time

is generally small (< 10%). This is because of two main factors: the

Skewed Freq Cyclic Skewed Size
Workload Type

0

10000

20000

of

 In
vo

ca
tio

ns

OW Cold OW Warm FC Cold FC Warm

Figure 7: FaasCache runs 50 to 100% more cold and warm

functions, for skewed workload traces.

evaluation metric chosen, and the properties of the workload trace.

The execution time is averaged across all function invocations.

However, serverless workloads consists of a large number of very

frequently invoked functions. The performance of these functions

is generally not affected by keep-alive policies, since any policy is

going to keep them in the cache because of their high frequency.

Thus, the difference between non work-conserving policies such

as TTL and Greedy-Dual is masked because of the frequent and

popular functions. For instance, the average inter-arrival time for

all three workloads is less than 36ms, or about 27 function invoca-

tions per second. Thus the server is overloaded, and TTL does well

even though it is not work-conserving. As the IAT grows, the effec-

tiveness of work-conserving caching-based approaches increases

compared to TTL, as we shall see in the next subsection.

We see a similar relation and behavior in the miss-ratio curves

shown in Figure 6. Due to function heterogeneity, the cold-start

overheads are not strictly correlated with cache miss ratios, and

thus the differences between policies is different compared to the

previously described actual cold-start overheads. Classic miss-ratio

curves do not consider the miss cost (i.e., initialization cost), which

is an important metric that is optimized by the Greedy-Dual ap-

proach. Thus in general, even in object caching contexts, miss-ratio

curves deviate from the actual performanceÐa behavior that we

also observe.

7.2 OpenWhisk Evaluation

In this subsection, we evaluate the performance of the FaasCache

system on real functions. We focus on the performance of Faas-

Cache’s Greedy-Dual keep-alive implementation, and compare it

to the vanilla OpenWhisk system which uses a 10 minute TTL.

In contrast to the previous subsection in which we showed the

average performance for different cache sizes, we will now also

focus on the inverse problem: for a fixed server size, how much

more load can be handled with FaasCache? By leveraging Greedy-

Dual caching, FaasCache is able to reduce cold-starts. This also

reduces the number of dropped requests.

OpenWhisk buffers and eventually drops requests if it cannot

fulfill them. Because FaasCache more effectively selects evictions,

its higher hit rate results in functions finishing faster, allowing

more functions to be executed in the same time frame. To examine

the effect of Greedy-Dual keep-alive on cold-start and dropped

395

FaasCache: Keeping Serverless Computing Alive with Greedy-Dual Caching ASPLOS ’21, April 19ś23, 2021, Virtual, USA

Figure 8: FaasCache increases warm-starts by more than 2×,

which also reduces system load and dropped functions.

requests, we use a workload trace comprising of four different

functions: Disk-bench, ML inference, Web-serving, and Floating-

point from Table 1.

In Figure 7, we use different kinds of skewed workloads: with a

single function having a different frequency, a cyclic access pattern,

and a skewed workload with 2 sizes. We see that FaasCache’s keep-

alive can increase the number of warm invocations by between 50

to 100% compared to OpenWhisk’s TTL. The difference in the total

number of requests served (warm+cold) is because OpenWhisk

drops a significant number of requests due to its high cold-start

overhead and resultant system load. Thus with FaasCache, the total

number of requests that are served also increases by 2×.

Next, we use the skewed frequency workload and use functions

from Table 1 to evaluate the impact on real applications. To gener-

ate the workload, the CNN, DD, andWeb-serving functions have an

inter-arrival time of 1500 ms, and the Floating-point function has

a lower IAT of 400 ms. Figure 8 shows the breakdown of different

function invocations for this workload on a 48 GB server. Interest-

ingly, OpenWhisk drops a significant number (50%) of requests due

to the its high cold-start overheads. FaasCache increases the warm

requests by more than 2×. Interestingly, the distribution of warm

starts is also different. FaasCache’s Greedy-Dual policy prioritizes

functions with higher initialization times, but penalizes those with

large memory footprints. Because the floating-point function has a

high initialization overhead (Table 1), it sees a 3× increase in hit-

ratio compared to OpenWhisk. In practical terms, the improvement

in keep-alive results in a 6× reduction in the application latency.

Result: FaasCache can increase the number of warm-starts by 2× to

3× depending on the function initialization overheads and workload

skew. This results in lower system load, which increases the number

of requests FaasCache can serve by 2×.

7.3 Effectiveness of Provisioning Policies

All our previous results have been with a statically allocated server,

and we now illustrate the effectiveness of our dynamic vertical

scaling policy described in Section 5.2. The goal is to dynamically

adjust the cache size based on the workload. Our policy seeks to

keep the miss speed (cold starts per second) close to a pre-specified

target. This is shown in Figure 9Ðthe target is 0.0015 misses per

second. In this experiment, the cache resizing is done only when

the miss speed error exceeds 30%, and we can see that the cache size

increases with the miss speed, and decreases with it. Without the

Figure 9: With dynamic cache size adjustment, the cold

starts per second are kept close to the target (horizontal line),

which reduces the average server size by 30%.

dynamic scaling, a conservative provisioning policy would result

in a constant, 10,000 MB size. In contrast, the average cache size

with our proportional controller is less than 7,000 MB. This 30%

reduction means that FaaS providers can reduce their provisioned

resources without compromising on performance. The freed-up

resources can be used to accommodate additional cloud workloads

(such as co-located VMs and containers). Our dynamic scaling is

extremely conservative: increasing its agressiveness by reducing

the error tolerance below 30% will reduce average server size, but

we seek to avoid the resultant small changes to memory-size to

minimize fragmentation.

8 RELATED WORK

Function Keep-alive.Mitigating cold-starts is one of the central

performance problems in FaaS, and has received commensurate at-

tention in both academia and industry. The initialization or startup

time of functions can be reduced by reducing container startup

overheads [16, 45, 46], or deploying functions inside ultra-light

containers, VMs, or unikernels [15, 42]. While these mechanisms

can reduce the cold-start overhead associated with the virtual envi-

ronment creation, the other sources of overheads remain, such as

losing all application initialized variables, cached files, etc. As we

have shown, keep-alive essentially serves the role of caching, and

fast startup only reduces the łmissž penalty, and does not eliminate

it.

Catalyzer [29] implements new mechanisms for checkpointing

and restoring application and sandbox state, which significantly

reduce the initialization cost of functions deployed in their gvisor-

based sandbox environment. Our approach is complementary to

these techniques, since we focus on retaining the entire execution

environment instead of optimizations for restoring/recreating it.

Keep-alive policies can be combined with these optimized mecha-

nisms to improve system-wide performance even further.

Principled keep-alive policies for functions have recently gained

attention: the recent dataset and policy from the Azure function

trace [48] shows the importance and effectiveness of keep-alive

policies. In contrast to our work, their policy does not take the

function size into consideration, and uses a time-series predcition

approach (effectively capturing recency and frequency), and com-

bines it with a predictive łprefetchingž approach. Aswe have shown,

396

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Alexander Fuerst and Prateek Sharma

function sizes are a crucial characteristic, and the use of caching

allows the use of advanced analytical and modeling approaches for

serverless computing in general. Earlier work has focused on sim-

ple łwarm container poolsž [41], in which Kubernetes cluster runs

a certain number of warm containers for functions. Our caching-

based policies take this one step further and decide which container

to keep-alive, and for how long. Polling to keep cloud functions

warm has also been a popular method [2, 6].

Our work considers functions individuallyÐfunction scheduling

with DAG based approaches [22] is effective for function-chains,

and are orthogonal and complementary to our work. Hiding func-

tion latency using data caching (such as redis) for database applica-

tions is investigated in [33]. The ENSURE [52] system handles keep-

alive and resource provisioning for CPU resources using queueing

theory techniques. Our focus is on memory-constrained keep-alive

and provisioning, and CPU-focused approaches are complementary

to our work.

9 DISCUSSION

In this section, we reflect on how our ideas fit into the broader

serverless computing ecosystem.

Impact on colocated applications. The short execution lifecycles

of serverless functions makes them a good workload to colocate

with other long-running containers, VMs, batch-jobs, etc. Such

workload management architectures result in an additional layer

of performance tradeoffs: the keep-alive policies not only influence

function performance, but also the performance of other colocated

applications. Our provisioning policies in Section 5 can be used to

find the appropriate keep-alive cache size based on the performance

vs. memory-consumption tradeoff captured in the hit-rate curves.

Ultimately, the tradeoff between function and other colocated ap-

plication performance is determined by their utility and revenue

for the cloud provider. Nevertheless, our provisioning policies can

provide a principled way to examine these tradeoffs, and is part of

our future work.

Cluster-level analysis. Cluster-level function load-balancing and

scheduling also affects keep-alive. Load-balancing policies deter-

mine the function load and distribution of function characteristics

on servers. The function workload characteristics have a major

influence on performance, as we have extensively discussed in Sec-

tion 7 (e.g., Figure 5). For instance, a stateful load-balancing policy

which runs a function on the same subset of servers will result in

better temporal locality, which in turn improves keep-alive effec-

tiveness. On the other hand, randomized load-balancing is simpler

to implement and scale, but offers worse temporal locality to indi-

vidual servers. We have deliberately focused our techniques and

evaluation on a single-server setting, in order to provide modular

and easily reproducible policies.

Explicit initialization. There are many techniques for reducing

the initialization cost, which can be combined with our policies. The

cold-start overhead can also be addressed by explicit initialization of

functions, in which the initialization code is provided as a separate,

explicit call-back. For instance, OpenWhisk supports an init call

into the function runtime, which can be executed before the func-

tion is triggered with the run call. This explicit initialization allows

functions to be pre-warmed, and can be used to reduce the cold-

start overhead. However, explicit initialization is not commonÐour

empirical investigation into FaaS benchmarks [40] and official ex-

amples showed that applications do not use this functionality. We

speculate that the slow adoption is due to the subtle differences in

the various cloud function APIs, serverless platforms, and runtimes.

Nevertheless, it can be a powerful technique to amortize expen-

sive operations such as package imports and downloading data

dependencies, and increase the effectiveness of keep-alive policies

even further. By separating out the initialization code and actual

function code, explicit initialization can also increase the potency

of function prefetching [48].

10 CONCLUSION

The main insight in this paper is the equivalence between function

keep-alive and object caching. This can have far reaching con-

sequences for cloud resource management policies. We showed

that classic size and frequency-aware caching algorithms such as

Greedy-Dual can be adapted to yield effective and principled keep-

alive policies. The tradeoff between server memory-utilization and

cold-start overheads can also be analyzed through hit-ratio curves,

which can also be used for dynamic resource allocation. FaasCache,

our OpenWhisk-based system, implements these caching-based

techniques. We hope that our caching analogy opens the door to

more caching-based serverless systems and analysis.

ACKNOWLEDGMENTS

Our sincere thanks and appreciation goes to the ASPLOS reviewers

and our shepherd Ana Klimovic, for their extremely insightful and

helpful comments and suggestions that have significantly improved

the quality of this paper. Comments from Mohammad Shahrad and

other authors of [48] helped us understand and clarify some of the

nuances of the Azure dataset. Thanks also to the artifact evaluation

committee and its volunteers for comments which have improved

the usability of the FaasCache software artifact. This work was

supported by startup funds from Indiana University.

A ARTIFACT APPENDIX

A.1 Artifact Check-List (Meta-Information)

• Program: FaasCache

• Data set: see A.2.4

• Run-time environment: Ubuntu 16.04.5

• Hardware: 250 GB RAM, 48 cores

• Experiments: Simulation & OpenWhisk implementation

• Howmuch disk space required (approximately)? 10 GB

• Howmuch time is needed to prepareworkflow?2 hours

• How much time is needed to complete experiments

(approximately)? 6 hours

• Publicly available? Yes

• Archived (provide DOI)? 10.5281/zenodo.4321766

A.2 Description

We have two main software artifacts.

The first is a discrete-event simulator for FaaS workloads written

in Python. This simulator implements various keep-alive policies,

397

FaasCache: Keeping Serverless Computing Alive with Greedy-Dual Caching ASPLOS ’21, April 19ś23, 2021, Virtual, USA

all of which are described in the full paper. Its inputs are workload

trace files that are publicly available at the Azure trace site, and

serialized into a custom format by scripts in code/split/gen. The

simulator takes server memory size, keep-alive policy, input trace

file as arguments, and outputs various statistics on warm and cold

starts, memory usage, and other accounting information. These out-

puts are run through the data-graphing scripts in code/split/plotting,

to produce figures such as Figure 5 in the paper.

The second artifact is a custom OpenWhisk (i.e., FaasCache). It

is a drop-in replacement of OpenWhisk with the same installation

procedures. It optimizes OpenWhisk scheduling with GD keep-

alive policy. FaasCache or vanilla OpenWhisk can both be used to

generate the information from Table 1 in the paper.

Our artifact also includes some FaasCache performance tests in

faas-keepalive/code/wsk-actions/load-test/traces. These can be run

with scripts in faas-keepalive/code/wsk-actions/load-test that invoke

LookBusy work-simulating FaaS functions at regular intervals to

load test the FaasCache design.

Full details on how to run these two artifacts are in Section A.4

below. For brevity, portions talking about the simulator or Open-

Whisk load generation will be referencing folder faas-keepalive.

Those sections on running the customized OpenWhisk server are

based in folder openwhisk-caching.

A.2.1 How to Access. 10.5281/zenodo.4321766

The code for both experiments is in the zenodo zip, but also

available on GitHub.

Simulator code is here: https://github.com/aFuerst/faascache-sim

FaasCache OpenWhisk implementation:

https://github.com/aFuerst/openwhisk-caching/

commit/38ff898d45da57726da38c00f735cb449e7f8595

A.2.2 Hardware Dependencies. To reproduce the FaasCache load

test results, it is recommended to use sufficient RAM and CPU cores.

We used 64 GB RAM, and 48 CPU cores. The simulator needs 1 GB

RAM per core, and is embarrassingly parallel and is mainly limited

by total system memory.

A.2.3 Software Dependencies.

(1) Python 3.7+

(2) Docker

(3) Java

A.2.4 Data Sets. The original data is pulled from the dataset de-

scribed in this markdown file:

https://github.com/Azure/AzurePublicDataset/

blob/master/AzureFunctionsDataset2019.md

The representative trace used in the paper is in the zip, called

392-b.pckl. Pre-computed simulator results are also in the zip, in the

folder 392-pckls. These are high-resolution results, memory-wise,

as the simulation is compute-intensive (i.e. slow).

A.3 Installation

A.3.1 Simulator Setup. The original trace dataset can be found

here:

https://github.com/Azure/AzurePublicDataset/

blob/master/AzureFunctionsDataset2019.md

The simulator code is available here, as well as in the zip:

https://github.com/aFuerst/faascache-sim

The script ./code/split/trace_split_funcs.py will combine the first

day’s info into one file. Edit datapath and store in the script to adjust

input and output locations.

./code/split/gen_representative_trace.py will create traces that are

generally representative of the larger trace sample. Edit datapath

and store in the script to adjust input for trace CSVs and split pickles

(made by trace_split_funcs.py above) respectively. save_dir points

to the folder where the resulting combined trace(s) will be saved.

Change lines 131-133 if you want specific trace sizes.

./code/split/gen_rare.pywill create traces using the rarest half and

quarter of functions. You can edit line 99 to adjust which quartiles

it picks functions from.

A.3.2 FaasCache OpenWhisk Setup. FaasCache OpenWhisk imple-

mentation:

https://github.com/aFuerst/openwhisk-caching/

commit/38ff898d45da57726da38c00f735cb449e7f8595

Install the OpenWhisk CLI:

https://github.com/apache/openwhisk#quick-start

OpenWhisk testing code (a subset of FaasCache sim repo):

https://github.com/aFuerst/faascache-sim/tree/master/code/wsk-

actions

All the edits made to the OpenWhisk source for FaasCache are

located in the file core/containerpool/ContainerPool.scala.

Build the dockerfile located at code/wsk-actions/py/Dockerfile

with the name/tag alfuerst/wsk-py-pybuild. This name is not re-

quired, but you will have to change the next script to use the name

you pick. ./code/wsk-actions/py/build.sh will create zip packages for

all the actions that OpenWhisk can use.

To run the load tests on OpenWhisk you will also have to build

the LookBusy Docker container in

./code/wsk-actions/load-test/lookbusy. Make sure the new Docker

container is added as a runtime to the OpenWhisk ansible/files/run-

times.json. The default AI container OpenWhisk uses still may be

missing packages, if this is the case you will also have to build the

Dockerfile at wsk-actions/py/cust_ai and add it as a custom runtime.

Edit the ./sample-app.conf in the root and put it in ./bin/. Rename

it to application.conf. OpenWhisk requires this configuration file to

run and allow function creation. You can adjust container-pool.user-

memory depending on local resources.

./openwhisk-caching/blob/master/run.sh will build and run the

custom OpenWhisk.

Make sure the .conf whisk.user info matches between the scripts

that talk to OpenWhisk.

code/wsk-actions/load-test/wsk_interact.py contains helper func-

tions that interact with the OpenWhisk CLI to set up functions and

authentication. If you use a different username or auth key then

you will need to edit this file.

A.4 Experiment Workflow

A.4.1 FaasCache Simulation. The ./code/run_sim.sh file will run a

trace in the simulator and graph the results.

Step 1. trace_dir => folder where trace file needs to be

Step 2. trace_output_dir => folder where sim results will end up

Step 3. log_dir => file where sim log data will end up

The location of the trace output and log outputmust be different.

398

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Alexander Fuerst and Prateek Sharma

Edit the number of functions in ./code/run_sim.sh to match the

number of functions in the trace you want to run (this number

will be in the file name). Make sure the trace file letter (-b-, etc.)

matches line 65 of ./code/split/many_run.py, this is set by the trace

generation script.

Running the Simulator. many_run.py executes instances of the

simulator (LambdaScheduler) in parallel and saves the results of

each simulation to a pickle file. The inputs and outputs ofmany_run.py

are documented in the file itself. LambdaScheduler.py contains all

the major simulator code, and the helper classes are located in:

Step 1. LambdaData.py - represents a Serverless function, holding

a name, memory size, and cold and warm runtime lengths

Step 2. Container.py - holds a LambdaData and tracks if it is warm

or cold and when it was last accessed

Each function execution enters with runActivation which does

the following (function names are emphasized)

Step 1. cleanup_finished - remove containers that have exceeded

their TTL (if applicable)

Step 2. PreWarmContainers - prewarm containers when calculated

by the histogram policy (if that policy is being simulated)

Step 3. track_activation - book-keeping for the histogram policy (if

that policy is being simulated)

Step 4. find_container - search for a container that matches the

function being invoked that currently isn’t running another

function

(a) cache_miss

(i) create a new Container for the function

(ii) evict low-priority containers tomake room if necessary

(iii) assign the function to it, and set the cold running time

(b) Cache hit - a requisite container was found, simply as-

signs the function to it and sets the warm running time

Step 5. calc_priority - update the priority of the function that was

just called and any functions of that type that are currently

in-memory

Simulation Analysis. These two scripts compute the number of

cold/warm starts, and the global increase in execution time.

compute_policy_results.py

compute_mem_usage.py

Plotting Results. These two perform the plotting for figures 5 & 6

respectively: plot_run_across_mem.py, and plot_cold_across_mem.py.

The folder contains several other plotting scripts for analyzing

the simulation results, but we chose not include those plots in the

paper.

A.4.2 FaasCache OpenWhisk. You can follow the items in run.sh

to run individual actions or run

./code/wsk-actions/load-test/testing/find_avgs.py to get average

run times for all the different actions.

./code/wsk-actions/load-test/gen_litmus.py will generate the lit-

mus test pckls for the full OpenWhisk tests. Then run code/wsk-

actions/load-test/sub_litmi.py to invoke the litmus test.

Cold vs warm hit metrics are output to OpenWhisk log (stdout

from sh/jar). Make sure to pipe the output to a file. You can grep

on cold hits: to look at current results.

If you run the any of the litmus test, stop the test after 2 hours.

OpenWhisk may or may not complete all invoked actions, stopping

it significantly late is ok, just wastes time. Then grep for the first

hit event, record the time, then grep for the event closest to 2 hours

later. This will match how the paper results were gathered.

A.5 Evaluation and Expected Results

Results should be similar to those in the paper.

The simulator results will not be identical if a new trace sampling

is used, and if a coarser grained memory step is used. We used 500

MB steps, but this dramatically increases needed simulation time.

Timings and numbers for the FaasCache OpenWhisk implemen-

tation will vary marginally due to the stochastic nature of web

request handling and the inner workings of OpenWhisk.

REFERENCES
[1] [n.d.]. AWS Lambda Limits. https://docs.aws.amazon.com/lambda/latest/dg/

gettingstarted-limits.html.
[2] [n.d.]. Keeping Functions Warm - How To Fix AWS Lambda Cold Start Issues.

https://serverless.com/blog/keep-your-lambdas-warm/.
[3] [n.d.]. PID Controllers. https://en.wikipedia.org/wiki/PID_controller.
[4] 2015. Docker. https://www.docker.com/.
[5] 2017. How long does AWS Lambda keep your idle functions around before a

cold start? https://read.acloud.guru/how-long-does-aws-lambda-keep-your-
idle-functions-around-before-a-cold-start-bf715d3b810.

[6] 2018. LambdaWarmer: Optimize AWS Lambda Function Cold Starts. https://www.
jeremydaly.com/lambda-warmer-optimize-aws-lambda-function-cold-starts/.

[7] 2019. AWS Lambda predictable start-up times with provisioned concurrency.
https://aws.amazon.com/blogs/compute/new-for-aws-lambda-predictable-
start-up-times-with-provisioned-concurrency/.

[8] 2019. Azure Functions Warm-up trigger. https://docs.microsoft.com/en-us/azure/
azure-functions/functions-bindings-warmup.

[9] 2020. Apache OpenWhisk: Open Source Serverless Cloud Platform. https:
//openwhisk.apache.org/.

[10] 2020. AWS Lambda. https://aws.amazon.com/lambda/.
[11] 2020. Azure Functions. https://azure.microsoft.com/en-us/services/functions/.
[12] 2020. Google Cloud Functions. https://cloud.google.com/functions.
[13] 2020. Google Cloud Functions Tips and Tricks. https://cloud.google.com/

functions/docs/bestpractices/tips.
[14] 2020. OpenFaaS : Server Functions, Made Simple. https://www.openfaas.com.
[15] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Lightweight
Virtualization for Serverless Applications. In 17th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 20). 419ś434.

[16] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards High-
Performance Serverless Computing. USENIX ATC (2018), 14.

[17] Erwan Alliaume and Benjamin Le Roux. 2018. Cold start / Warm start with AWS
Lambda. https://blog.octo.com/en/cold-start-warm-start-with-aws-lambda/.

[18] Soumya Basu, Aditya Sundarrajan, Javad Ghaderi, Sanjay Shakkottai, and Ramesh
Sitaraman. 2017. Adaptive TTL-based caching for content delivery. In Proceed-
ings of the 2017 ACM SIGMETRICS/International Conference on Measurement and
Modeling of Computer Systems. 45ś46.

[19] Pei Cao and Sandy Irani. 1997. Cost-Aware WWW Proxy Caching Algorithms.
In Proceedings of the USENIX Symposium on Internet Technologies and Systems.
15.

[20] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy Katz.
2018. A case for serverless machine learning. InWorkshop on Systems for ML and
Open Source Software at NeurIPS, Vol. 2018.

[21] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy
Katz. 2019. Cirrus: a Serverless Framework for End-to-end ML Workflows. In
Proceedings of the ACM Symposium on Cloud Computing - SoCC ’19. ACM Press,
Santa Cruz, CA, USA, 13ś24. https://doi.org/10.1145/3357223.3362711

[22] Benjamin Carver, Jingyuan Zhang, Ao Wang, and Yue Cheng. 2019. In Search
of a Fast and Efficient Serverless DAG Engine. arXiv:1910.05896 [cs] (Oct. 2019).
http://arxiv.org/abs/1910.05896 arXiv: 1910.05896.

[23] Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna Woodard, Ben
Blaiszik, Ian Foster, and Kyle Chard. 2020. FuncX: A Federated Function Serving
Fabric for Science. In Proceedings of the 29th International Symposium on High-
Performance Parallel and Distributed Computing (Stockholm, Sweden) (HPDC
’20). Association for Computing Machinery, New York, NY, USA, 65ś76. https:

399

https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://serverless.com/blog/keep-your-lambdas-warm/
https://en.wikipedia.org/wiki/PID_controller
https://www.docker.com/
https://read.acloud.guru/how-long-does-aws-lambda-keep-your-idle-functions-around-before-a-cold-start-bf715d3b810
https://read.acloud.guru/how-long-does-aws-lambda-keep-your-idle-functions-around-before-a-cold-start-bf715d3b810
https://www.jeremydaly.com/lambda-warmer-optimize-aws-lambda-function-cold-starts/
https://www.jeremydaly.com/lambda-warmer-optimize-aws-lambda-function-cold-starts/
https://aws.amazon.com/blogs/compute/new-for-aws-lambda-predictable-start-up-times-with-provisioned-concurrency/
https://aws.amazon.com/blogs/compute/new-for-aws-lambda-predictable-start-up-times-with-provisioned-concurrency/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-warmup
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-warmup
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions
https://cloud.google.com/functions/docs/bestpractices/tips
https://cloud.google.com/functions/docs/bestpractices/tips
https://www.openfaas.com
https://blog.octo.com/en/cold-start-warm-start-with-aws-lambda/
https://doi.org/10.1145/3357223.3362711
http://arxiv.org/abs/1910.05896
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3369583.3392683

FaasCache: Keeping Serverless Computing Alive with Greedy-Dual Caching ASPLOS ’21, April 19ś23, 2021, Virtual, USA

//doi.org/10.1145/3369583.3392683
[24] Hao Che, Ye Tung, and Zhijun Wang. 2002. Hierarchical web caching systems:

Modeling, design and experimental results. IEEE journal on Selected Areas in
Communications 20, 7 (2002), 1305ś1314.

[25] Kai Cheng and Yahiko Kambayashi. 2000. LRU-SP: a size-adjusted and popularity-
aware LRU replacement algorithm for web caching. In Proceedings 24th Annual
International Computer Software and Applications Conference. COMPSAC2000.
IEEE, 48ś53.

[26] Ludmila Cherkasova. 1998. Improving WWW Proxies Performance with Greedy-
Dual-Size-Frequency Caching Policy. In HP Labs Technical Report 98-69 (R.1).

[27] Ludmila Cherkasova and Gianfranco Ciardo. 2001. Role of Aging, Frequency,
and Size in Web Cache Replacement Policies. In High-Performance Computing
and Networking, G. Goos, J. Hartmanis, J. van Leeuwen, Bob Hertzberger, Alfons
Hoekstra, and Roy Williams (Eds.). Vol. 2110. Springer Berlin Heidelberg, Berlin,
Heidelberg, 114ś123. https://doi.org/10.1007/3-540-48228-8_12 Series Title:
Lecture Notes in Computer Science.

[28] Ludmila Cherkasova and Gianfranco Ciardo. 2001. Role of aging, frequency,
and size in web cache replacement policies. In International Conference on High-
Performance Computing and Networking. Springer, 114ś123.

[29] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin, Qix-
uan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond Startup for Serverless
Computing with Initialization-less Booting. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 467ś481.

[30] Gil Einziger, Roy Friedman, and Ben Manes. 2017. Tinylfu: A highly efficient
cache admission policy. ACM Transactions on Storage (ToS) 13, 4 (2017), 1ś31.

[31] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, and Shuvo Chatterjee. 2019.
From Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of Transient
Functional Containers. USENIX ATC (2019), 15.

[32] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A Kozuch.
2012. Autoscale: Dynamic, robust capacity management for multi-tier data
centers. ACM Transactions on Computer Systems (TOCS) 30, 4 (2012), 1ś26.

[33] Bishakh Chandra Ghosh, Sourav Kanti Addya, Nishant Baranwal Somy,
Shubha Brata Nath, Sandip Chakraborty, and Soumya K. Ghosh. 2019. Caching
Techniques to Improve Latency in Serverless Architectures. arXiv:1911.07351 [cs]
(Nov. 2019). http://arxiv.org/abs/1911.07351 arXiv: 1911.07351.

[34] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkatara-
mani, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2016. Serverless
computation with OpenLambda. In 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 16).

[35] Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo, Chen Ding, and Zhenlin
Wang. 2016. Kinetic modeling of data eviction in cache. In 2016 USENIX Annual
Technical Conference (USENIX ATC 16)). 351ś364.

[36] Bo Jiang, Philippe Nain, and Don Towsley. 2018. On the convergence of the ttl
approximation for an lru cache under independent stationary request processes.
ACM Transactions on Modeling and Performance Evaluation of Computing Systems
(TOMPECS) 3, 4 (2018), 1ś31.

[37] Aji John, Kristiina Ausmees, Kathleen Muenzen, Catherine Kuhn, and Amanda
Tan. 2019. SWEEP: Accelerating Scientific Research Through Scalable Serverless
Workflows. In Proceedings of the 12th IEEE/ACM International Conference on Utility
and Cloud Computing Companion - UCC ’19 Companion. ACM Press, Auckland,
New Zealand, 43ś50. https://doi.org/10.1145/3368235.3368839

[38] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the cloud: Distributed computing for the 99%. In Proceedings of the
2017 Symposium on Cloud Computing. ACM, 445ś451.

[39] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A. Pat-
terson. 2019. Cloud Programming Simplified: A Berkeley View on Serverless
Computing. arXiv:1902.03383 [cs] (Feb. 2019). http://arxiv.org/abs/1902.03383
arXiv: 1902.03383.

[40] Jeongchul Kim and Kyungyong Lee. 2019. FunctionBench: A Suite of Workloads
for Serverless Cloud Function Service. In 2019 IEEE 12th International Conference
on Cloud Computing (CLOUD). 502ś504. https://doi.org/10.1109/CLOUD.2019.
00091 ISSN: 2159-6182.

[41] Ping-Min Lin and Alex Glikson. 2019. Mitigating Cold Starts in Serverless
Platforms: A Pool-Based Approach. arXiv:1903.12221 [cs] (March 2019). http:
//arxiv.org/abs/1903.12221 arXiv: 1903.12221.

[42] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Bal-
raj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft.

2013. Unikernels: Library Operating Systems for the Cloud. In Proceedings of
the Eighteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (Houston, Texas, USA) (ASPLOS ’13). ACM,
New York, NY, USA, 461ś472. https://doi.org/10.1145/2451116.2451167

[43] Johannes Manner, Martin EndreB, Tobias Heckel, and Guido Wirtz. 2018. Cold
Start Influencing Factors in Function as a Service. In 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC Companion). IEEE,
Zurich, 181ś188. https://doi.org/10.1109/UCC-Companion.2018.00054

[44] Nimrod Megiddo and Dharmendra S Modha. 2003. ARC: A Self-Tuning, Low
Overhead Replacement Cache.. In USENIX FAST, Vol. 3. 115ś130.

[45] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti, Vadim
Sukhomlinov, and Naren Nayak. 2019. Agile Cold Starts for Scalable Server-
less. USENIX Workshop on Hot Topics in Cloud Computing (HotCloud) (2019),
6.

[46] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2018. SOCK: Rapid Task Provi-
sioning with Serverless-Optimized Containers. USENIX ATC (2018), 14.

[47] Elizabeth J O’neil, Patrick E O’neil, and Gerhard Weikum. 1993. The LRU-K page
replacement algorithm for database disk buffering. Acm Sigmod Record 22, 2
(1993), 297ś306.

[48] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider. (July 2020), 205ś218. http:
//arxiv.org/abs/2003.03423

[49] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram Venkataraman,
Ion Stoica, Benjamin Recht, and Jonathan Ragan-Kelley. 2018. Numpywren:
Serverless linear algebra. arXiv preprint arXiv:1810.09679 (2018).

[50] Prateek Sharma, AhmedAli-Eldin, and Prashant Shenoy. 2019. Resource Deflation:
A New Approach For Transient Resource Reclamation. In Proceedings of the
Fourteenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19). ACM, New
York, NY, USA, Article 33, 17 pages. https://doi.org/10.1145/3302424.3303945

[51] Aditya Sundarrajan, Mingdong Feng, Mangesh Kasbekar, and Ramesh K Sitara-
man. 2017. Footprint descriptors: Theory and practice of cache provisioning
in a global cdn. In Proceedings of the 13th International Conference on emerging
Networking EXperiments and Technologies. 55ś67.

[52] Amoghavarsha Suresh, Gagan Somashekar, Anandh Varadarajan, Veeren-
dra Ramesh Kakarla, Hima Upadhyay, and Anshul Gandhi. 2020. ENSURE:
Efficient Scheduling and Autonomous Resource Management in Serverless Envi-
ronments. (2020), 10.

[53] Erwin van Eyk, Alexandru Iosup, Simon Seif, and Markus Thommes. 2017. The
SPEC cloud group’s research vision on FaaS and serverless architectures. In
Proceedings of the 2nd International Workshop on Serverless Computing - WoSC ’17.
ACM Press, Las Vegas, Nevada, 1ś4. https://doi.org/10.1145/3154847.3154848

[54] Carl A Waldspurger, Nohhyun Park, Alexander Garthwaite, and Irfan Ahmad.
2015. Efficient MRC Construction with SHARDS. In 13th USENIX Conference on
File and Storage Technologies (FAST 15). 95ś110.

[55] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. 2018. Peeking behind the curtains of serverless platforms. In 2018 USENIX
Annual Technical Conference. 133ś146.

[56] B. P. Welford. 1962. Note on a Method for Calculating Cor-
rected Sums of Squares and Products. Technometrics 4, 3
(1962), 419ś420. https://doi.org/10.1080/00401706.1962.10490022
arXiv:https://www.tandfonline.com/doi/pdf/10.1080/00401706.1962.10490022

[57] Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas JA Harvey, and Andrew
Warfield. 2014. Characterizing storage workloads with counter stacks. In 11th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 14).
335ś349.

[58] N. Young. 1994. The K-server dual and loose competitiveness for paging. Algo-
rithmica 11, 6 (June 1994), 525ś541. https://doi.org/10.1007/BF01189992

[59] Neal E Young. 2002. On-line file caching. Algorithmica 33, 3 (2002), 371ś383.
[60] Yu Zhang, Ping Huang, Ke Zhou, Hua Wang, Jianying Hu, Yongguang Ji, and Bin

Cheng. 2020. OSCA: An Online-Model Based Cache Allocation Scheme in Cloud
Block Storage Systems. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20). USENIX Association, 785ś798. https://www.usenix.org/conference/
atc20/presentation/zhang-yu

[61] Yu Zhang, Ping Huang, Ke Zhou, Hua Wang, Jianying Hu, Yongguang Ji, and Bin
Cheng. 2020. OSCA: An Online-Model Based Cache Allocation Scheme in Cloud
Block Storage Systems. In 2020 USENIX Annual Technical Conference. 785ś798.

400

https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1007/3-540-48228-8_12
http://arxiv.org/abs/1911.07351
https://doi.org/10.1145/3368235.3368839
http://arxiv.org/abs/1902.03383
https://doi.org/10.1109/CLOUD.2019.00091
https://doi.org/10.1109/CLOUD.2019.00091
http://arxiv.org/abs/1903.12221
http://arxiv.org/abs/1903.12221
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1109/UCC-Companion.2018.00054
http://arxiv.org/abs/2003.03423
http://arxiv.org/abs/2003.03423
https://doi.org/10.1145/3302424.3303945
https://doi.org/10.1145/3154847.3154848
https://doi.org/10.1080/00401706.1962.10490022
https://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/00401706.1962.10490022
https://doi.org/10.1007/BF01189992
https://www.usenix.org/conference/atc20/presentation/zhang-yu
https://www.usenix.org/conference/atc20/presentation/zhang-yu

	Abstract
	1 Introduction
	2 Background
	2.1 Function Keep-Alive
	2.2 Caching

	3 Keep-alive Tradeoffs
	3.1 Policy Goals and Considerations

	4 Caching-based Keep-Alive Policies
	4.1 Greedy-Dual Keep-Alive Policy
	4.2 Other Caching-Based Policies

	5 Server Provisioning Policies
	5.1 Static Provisioning
	5.2 Elastic Dynamic Scaling

	6 Implementation
	7 Experimental Evaluation
	7.1 Trace-Driven Keep-Alive Evaluation
	7.2 OpenWhisk Evaluation
	7.3 Effectiveness of Provisioning Policies

	8 Related Work
	9 Discussion
	10 Conclusion
	A Artifact Appendix
	A.1 Artifact Check-List (Meta-Information)
	A.2 Description
	A.3 Installation
	A.4 Experiment Workflow
	A.5 Evaluation and Expected Results

	References

