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ABSTRACT
Providing efficient Functions as a Service (FaaS) is challenging due

to the serverless programmingmodel and highly heterogeneous and

dynamic workloads. Great strides have been made in optimizing

FaaS performance through scheduling, caching, virtualization, and

other resource management techniques. The combination of these

advances and growing FaaS workloads have pushed the perfor-

mance bottleneck into the control plane itself. Current FaaS control

planes like OpenWhisk introduce 100s of milliseconds of latency

overhead, and are becoming unsuitable for high performance FaaS

research and deployments.

We present the design and implementation of Ilúvatar, a fast,

modular, extensible FaaS control plane which reduces the latency

overhead by more than two orders of magnitude. Ilúvatar has a

worker-centric architecture and introduces a new function queue

technique for managing function scheduling and overcommitment.

Ilúvatar is implemented in Rust in about 13,000 lines of code, and in-

troduces only 3ms of latency overhead under a wide range of loads,

which is more than 2 orders of magnitude lower than OpenWhisk.

CCS CONCEPTS
•Computer systems organization→Cloud computing; • Soft-
ware and its engineering → Cloud computing; Software li-

braries and repositories; •Computingmethodologies→Discrete-
event simulation.
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1 INTRODUCTION
Serverless computing, or Functions as a Service, has emerged as

a key cloud abstraction which is enabling the rapid development

and cloud deployment of many applications [12, 22, 54]. Functions

are small, self-contained programs, whose entire execution and

scaling is managed by the FaaS provider. FaaS has emerged as a

major and growing cloud workload [56], and serves as the resource

abstraction for a wide range of event-driven applications (such as

web and API services, IoT, and ML inference), workflows [23, 42],

and even throughput-intensive parallel workloads [21, 27, 28, 68].

The FaaS programming and deployment model, along with the

highly heterogeneous nature of FaaS workloads, presents many

fundamental performance challenges for FaaS providers. This has

motivated huge and rapid strides in many areas of systems research:

advances in FaaS scheduling [63], load-balancing [31], workflow-

management [51], and lightweight sandboxing [25] can all improve

various facets of FaaS performance by orders of magnitude.

In most cases, these FaaS performance optimizations and re-

source management policies are implemented and evaluated using

existing popular FaaS frameworks such as OpenWhisk [4]. These

frameworks are also used in real-world deployments, and thus FaaS

performance research can have a large direct impact by improv-

ing and enhancing these frameworks. These frameworks provide a

“FaaS control plane”, which runs on top of a large cluster of servers,

and manages all facets of function execution such as scheduling,

monitoring, accounting, etc.

In this paper, we focus on the performance of the FaaS control

plane itself, a critical but mostly overlooked component in the FaaS

ecosystem. They are an important new class of middleware, and

are interesting and novel from a system design, implementation,

and optimization perspective. At one end, they have to handle the

extreme scale and heterogeneity of functions, where the execution

and inter arrival times can vary by several orders of magnitude. At

the other end, they have to work with many intricately connected

software components for operating system virtualization, container

runtimes (such as Docker), networking, etc.

We posit that current FaaS control planes such as OpenWhisk

have become unsuitable due to the rapid growth of FaaS workloads

and advances in FaaS research. Historically, functions suffered very

high cold-start overheads associated with initializing their execu-

tion runtimes and dependencies in a sandboxed environment (such

as a container or a VM). However, techniques such as keep-alive,

prefetching, VM snapshots, and specialized lightweight sandbox-

ing have reduced the effective cold-start overheads, and the spatial

and temporal locality of FaaS workloads means that over 99% in-

vocations are warm [30]. We find that fundamental design and

implementation issues hinder good performance, adding 100s of
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milliseconds of tail latency even to warm-start invocations served

from fully-initialized containers in memory. Due to this control
plane overhead, function performance is now increasingly bottle-

necked by the control plane itself.

To rectify that, we present Ilúvatar, our clean-slate design of a

low-latency control plane for high performance FaaS research and

deployments. Ilúvatar is intended as a simple, extensible, general-

purpose FaaS control planewhich runs functions insideOCI-compliant

containers (such as containerd, Docker, etc.), and makes minimal as-

sumptions about the workload or function sandboxing. The combi-

nation of our design principles, performance optimizations, worker-

centric architecture, and carefully optimized Rust implementation,

reduces our overhead to less than 3ms, more than 2 orders of magni-

tude lower than OpenWhisk. Ilúvatar’s design tackles these funda-

mental performance challenges by using simple design principles:

for instance, we use resource caching heavily across the control

plane for mitigating the “slow path”.

For regulating worker load and improving latency, we develop

new function-size-aware queueing policies. Queueing in Ilúvatar pro-

vides a new principled overcommitment knob, allowing FaaS providers

to improve both utilization and latency. The worker-level queue

design also helps in mitigating bursts, reducing concurrent cold

starts, and prioritizing functions. Ilúvatar’s queue design makes it

easy to implement advanced data-driven queueing and scheduling

policies, which are highly appealing because of the high temporal

locality of FaaS workloads.

Ilúvatar is intended to serve as a platform for empirical FaaS

research, and provides a low latency, low jitter experimentation

environment. It implements and introduces state-of-the-art policies

for load-balancing, function scheduling, keep-alive, and provides

easy to use data and control APIs for developing advanced data and

machine learning driven policies. It provides a variety of resource

management and overcommitment options, and supports multi-

ple container backends (such as containerd and Docker). We have

designed Ilúvatar to be modular and compatible with the recent

and anticipated advances in FaaS resource management such as

snapshots, overcommit, statistical learning based scheduling, etc.

We also introduce a new technique for in-situ simulations, where

Ilúvatar can double as a full-fledged FaaS simulator for protoyping

and evaluating policies. Through the design and implementation

of Ilúvatar, we make the following major contributions:

(1) Ilúvatar provides fast, predictable, jitter-resistant function exe-

cution using a worker-centric architecture, resource caching, and

an asynchronous implementation in a non garbage collected lan-

guage. Ilúvatar is 13,000 lines of Rust code. It is open source, and

available at https://github.com/cos-in/iluvatar-faas .

(2) Our research novelty lies in optimizingwarm starts and queueing-

based scheduling and overcommitment policies for heterogeneous

and bursty function workloads (such as Azure’s [56]).

(3) We reduce latency overhead by up to 100× vs. OpenWhisk.

(4) We show how our worker-level queue architecture and policies

can provide new knobs for controlling overcommitment, average

latency, and fairness.

(5) Ilúvatar provides a reliable and extendible FaaS platform, and

our performance matches the idealized Little’s law model.

2 BACKGROUND & MOTIVATION
Functions as a Service (FaaS) allows users to register small snippets

of function code that get executed in response to some event or trig-

ger (such as anHTTP request, message queue event, etc.) [5, 6, 8, 54].

These functions must be stateless: a new execution environment

may be created for every invocation (and can be destroyed after

the function returns). The function code also contains all the neces-

sary code and data dependencies (such as imported libraries and

packages), and thus functions may spend significant time being ini-
tialized before the event-handling code can execute. Functions are

executed inside virtual execution environments such as hardware

virtualmachines, OS containers like Docker, or even language-based

runtimes such as javascript WASM [59]. Function initialization, i.e.,

creating the execution environment and resolving code/data de-

pendencies, can take 100s of milliseconds, and this “cold-start” can

significantly increase the latency of small functions [25, 30]. Ini-

tialized function sandboxes can be retained in memory, and this

keep-alive provides faster “warm-starts” [30]. Since functions are

arbitrary user-code, they are extremely heterogeneous in their ex-

ecution characteristics and resource requirements. For instance,

the Azure FaaS trace [56] shows that the 50th and 95th percentile

of execution time can range from 1 second to 1 minute; and the

inter-arrival-time from 1 second to 15 minutes respectively.

2.1 FaaS Control Planes
All aspects of function execution are orchestrated by a FaaS control
plane, which are implemented by frameworks like OpenWhisk [4].

For using a FaaS service, the user interacts with the control plane

for registering and invoking functions, tracking their status, etc.

The control plane manages the resources of a cluster of servers, and

schedules functions on to them based on its load-balancing policies.

In OpenWhisk, user requests for invoking a function go through

a reverse proxy (NGINX) to the central controller, which implements,

among other things, load-balancing (a variant of consistent hashing

with bounded loads by default). The controller puts the function

invocation request into a shared Apache Kafka [3] queue. Inside

the worker, the invoker service pulls function invocations from

the Kafka queue based on that worker’s own resource availability.

Docker containers running a Go-based control plane agent are used

to isolate functions, and each worker maintains a container pool of

initialized/warm containers. OpenWhisk logs function results in a

CouchDB instance. Importantly, both Kafka and CouchDB are on

the critical path, and add 100s of ms to invocation latency. Open-

Whisk is highly modular and distributed, with many networked

services. All of these, combined with the JVM GC (it is implemented

in Scala), results in large and unpredictable latency spikes [31, 57],

with slowdowns of more than 10, 000× reported [73].

2.2 Why a new FaaS control plane?
We believe that the FaaS control plane is an important component

of the modern cloud ecosystem, and presents many optimization

opportunities and interesting research questions in system design.

Performance. Because of its central role in coordinating all aspects
of function execution, the control plane plays a major role in de-

termining function performance. Managing the function execution

lifecycle for hundreds of concurrent invocations imposes a control

https://github.com/cos-in/iluvatar-faas
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Figure 1: The latency overhead of the control plane, as the
number of concurrent invocations increases. OpenWhisk
overhead is significant and has high variance, resulting in
high tail latency. Ilúvatar reduces this overhead by 100x.

plane overhead, and increases the end-to-end latency. This control

plane overhead can be significant, and affects all function invoca-

tions, including and especially the “warm starts”. This overhead

(end-to-end latency minus the function code execution time) for

the PyAES function from FunctionBench [40] is shown in Figure 1.

The figure shows the 50 and 99 percentile overheads as the num-

ber of concurrent invocations are increased. In each case, we are

invoking the function repeatedly in a closed-loop, and concurrent

invocations are achieved by using multiple client threads. All in-

vocations are warm starts. The experiment is run on a 48 core

server (more details in Section 6), and the figure thus shows the

performance at low and medium load conditions.

From Figure 1, we can see that the OpenWhisk latency overhead

is more than 10ms, which is already a significant increase in latency

for small functions which dominate real-world FaaS workloads.

Worryingly, the 99 percentile overhead is much higher, and rises

to as much as 600ms. We also see strange inversions in the scaling

behavior: the overhead reduces for certain load-levels, and then

increases again. This high overhead, high variance, and uncertain

scaling behavior, results in many challenges for FaaS providers. Due
to these issues, low-latency functions see severe performance degra-

dation, and resource provisioning and capacity planning becomes

harder due to the high variance and performance unpredictability.

Some of these latency overheads are an artifact of the architec-

ture. The shared Kafka function queue can be a major bottleneck;

and there are no explicit backpressure or load regulation mecha-

nisms, which is compounded by the CPU overcommitment. For the

sake of comparison, the figure also shows the latency overhead of

Ilúvatar in the same environment. We are able to achieve a per-

invocation mean overhead of less than 2ms for almost all the load

conditions. Importantly, the tail overhead is also small: less than

3ms for less than 32 concurrent invocations, rising to 10ms when

the system is saturated.

To emphasize, for a median function in the Azure workload

which runs for 500 ms, OpenWhisk can increase its latency by 100%.

Thus, the control plane plays a crucial role in function performance.

We note that these are the best-case warm-start latencies, when

the function’s containers is fully initialized and in memory. Since

function cold-starts impose such a major performance penalty (in-

creasing latency by more than 10×), mitigating them has been a

major research focus. However, because of temporal and spatial

locality of access, caching and prefetching techniques can be ex-

tremely effective, and the cold-start rate is often less than 1% of

all invocations [30]. The majority of invocations are thus “warm”,

where the performance is dominated by control plane overheads.

System Design. As evidenced by the OpenWhisk architecture

presented earlier, FaaS control planes are large, complex distributed

systems. Due to the continually evolving needs of FaaS applications

and emergence of new sandboxing techniques (such as lightweight

VMs like Firecracker [13]), they are sandwiched between the scale

and heterogeneity of FaaS workloads on one hand, and the deep

stack of OS and virtualization components on the other.

For instance, systems for running web services or microservices

do not have to deal with large and highly variable sandbox man-

agement overheads, nor with highly heterogeneous request sizes.

For reducing tail latency, these systems can often rely on the OS

CPU scheduler for processor sharing, can do CPU allocation at very

fine granularity [36], use queueing theory techniques [48], etc. At

the other extreme, for longer running containers and VMs, their

control planes, like OpenStack or Kubernetes face a much lower

rate of VM arrivals and departures. and can do careful and “hard”

resource allocation using bin-packing [24].

Functions are highly heterogeneous, and can be seen as both

latency-sensitive web requests and large containers requiring sig-

nificant system resources for several seconds. FaaS control planes

thus have to do both low-latency allocation and pack CPU andmem-

ory resources on their servers carefully to maintain high system

utilization. Thus FaaS control planes are one of the more perfect

microcosms of challenges in resource management and control in

large scale distributed computing.

A clean-slate control plane design helps us investigate the funda-

mental performance tradeoffs and challenges in this fast-evolving

ecosystem. Our new implementation also helps to identify the cur-

rent performance bottlenecks and new avenues of OS optimizations.

Platform for Experimental Systems Research. Performance-

focused FaaS research is already challenging due to the extreme

scale and heterogeneity of the workloads. These challenges are

compounded by existing control planes like OpenWhisk that are

unfortunately highly unpredictable. The control plane jitter and

the extreme bimodal cold vs. warm latencies makes it difficult to do

reliable and reproducible research [43], and subtle environmental

and configuration effects can mask the true effects of new research

optimizations. However, it continues to be a key component in

developing and evaluating FaaS research [15, 16, 30, 31, 56, 63, 71].

With OpenWhisk, function performance can be severely affected

by a myriad of configuration options, such as insufficient memory

for CouchDB, networking configuration, Docker configuration, etc.

Given the importance of the control plane, we want predictable
performance to a large degree. In our experience, research in FaaS

is often hindered by the large overheads and complexity of existing

control planes. Thus, Ilúvatar is designed from the ground-up to be

lightweight and provide predictable performance under different

conditions. Our system implementation can potentially accelerate

the development of new optimizations, clarify our understanding

of performance characteristics of this relatively new stack, and

provide a platform for robust experiments. With a robust platform,

the community can share knowledge and advances, while being

able to compare against a well-known and trusted baseline.
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Figure 2: Ilúvatar has a worker-centric architecture. A per-
worker queue helps schedule functions, and regulate load
and overcommitment.

3 ILÚVATAR DESIGN
Ilúvatar’s design is guided by our experience of OpenWhisk per-

formance, and by our goals of providing predictable performance,

modularity, and a platform for reliable FaaS research.

3.1 Architecture and Overview
The Ilúvatar control plane is spread out across a load balancer

and the individual workers, and sits above the containerization

layers. We intend for Ilúvatar to be the narrow waist [47] in the

FaaS ecosystem: with optimizations for DAG scheduling [72], state

handling [62], and horizontal scaling [31] implemented above it,

and sandboxing and containerization below it. This architecture

was motivated by the key question: Can fast FaaS control planes be
implemented with strict layering and separation of concerns?

We have found that most of the control plane overhead is in

the workers, and hence optimizing the worker performance is our

major focus. Our architecture is worker-centric, and places more

performance and load-management responsibility on the individ-

ual workers, instead of a more “top-down” centralized approach

favored by prior work such as Atoll [61] and others [37, 38]. Top-

down resource management requires a consistent global view of the

cluster, and is complementary to our work. Predictive techniques

for load-balancing, prefetching, scheduling, function-sizing can all

be effective, but we want to explore the performance characteristics

and limits of reactive control planes that work with unmodified

container runtimes.

Ilúvatar’s main components are shown in Figure 2. Clients/users

invoke functions using an HTTP or RPC API, with the main oper-

ations being register, invoke, async_invoke, and prewarm.
Workers also provide load and status information to the load-

balancer. We use stateless load-balancing, by using variants of

consistent hashing with bounded loads (CH-BL), which have been

proposed for FaaS recently [31]. This is a locality-aware scheme,

which runs functions on the same servers to maximize warm starts,

and forwards them to other servers only when the server’s load

exceeds some pre-specified load-bound.

Continuing on the worker-centric theme, the worker API is

a subset and almost completely identical to the overall API, and

functions can be launched directly on a worker for single-worker

setups and benchmarking, without going through a load-balancer

and adding unnecessary latency. The workers implement various

latency-hiding and burst-mitigation techniques. All functions are

launched inside containers, and dealing with the container layer

is a major part of the worker. Each worker maintains a container

pool of initialized containers for facilitating warm starts, and has

an invocation queue for handling dynamic loads. Function charac-

teristics such as their cold and warm execution times are captured

in various data-structures and are made available using APIs for

developing data-driven resource management policies.

An important contribution and component of Ilúvatar is its prin-

cipled support for function overcommitment based on its queueing

architecture. In many environments, like public FaaS providers,

function resources cannot be overcommitted. However, the actual

function resource usage is often significantly less compared to their

requested “size”. This difference is the motivation behind recent

“right sizing” work [14, 26, 32, 41, 64], and can significantly improve

system utilization. Through its queue-based architecture (described

in Section 4), Ilúvatar supports a wide range of overcommitment

scenarios, including no overcommitment, which is absent from

OpenWhisk. By default, OpenWhisk does not overcommit memory,

but can overcommit CPUs, which introduces performance interfer-

ence and potential SLA violations for functions.

3.2 Function Lifecycle
New functions need to be first registered, which entails download-

ing and preparing its container disk image. The container images

are fetched from DockerHub or some other image repository. Con-

tainer images are composed of multiple copy-on-write layers, and

we prepare the images by selecting the relevant layers for the oper-

ating system and CPU architecture. The images consist of the user-

provided function code and our agent, which is a simple Python

HTTP server that runs in each container. Registered functions can

then be directly invoked, which triggers launching of the function’s

container. The first invocation is usually a cold-start, which entails

launching the container image from disk, or from a previous snap-

shot [17, 66] if available. Each function container starts the agent

which listens for and controls the actual function code execution.

The agent has two simple commands, a GET / endpoint for simple

status checking, and a POST /invoke to run an invocation with

some arguments. When the container is ready, the worker sends an

HTTP request to the agent to start the function code execution. We

detect the container’s readiness using an inotify callback, which is

a faster and more generic mechanism for notification compared to

Docker’s built-in API. Finally, when the function finishes execution,

the HTTP call to the container’s agent returns, and the container is

marked as ‘available’ in the container pool, to be potentially used

for future invocations of the same function.

In the spirit of a fast “baseline” control plane and for isolation,

Ilúvatar does not share containers across functions. This is in con-

trast to SAND’s application sandboxing [15], SOCK’s Zygote con-

tainers [44], Nightcore [35], and even OpenFaaS [9]. Our isolation

model is similar to the public cloud providers.

Additionally, Ilúvatar introduces a standard prewarm API call,

which starts the function’s container and the agent inside of it, and

adds it to the container pool. This reduces most of the cold-start

overhead associated with the container. Prewarming can both avoid

a “thundering herd” of cold starts on worker startup, and be an

optimization in which the control plane anticipates invocations and
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Figure 3: The main components of the Ilúvatar overheads.

prepares containers for them. This allows for a systematic mecha-

nism to implement various recently proposed predictive prewarm

policies [52, 56, 60].

Function Latency Breakdown. Throughout Ilúvatar and this pa-

per, we are interested in three main performance metrics. The first

is the end-to-end latency of function execution, also called the flow
time, shown in Figure 3. This in turn has two main components:

the control plane overhead is the latency of Ilúvatar operations,

which are mainly before the start of function execution. The second

component is the function execution time, which is determined

by the function code, and the load on the system. The function

execution time is our baseline, and we compute the normalized
end-to-end latency by dividing the full latency by the execution

time (also called the stretch).
A more detailed latency breakdown is shown in Table 1. The

majority of overhead comes from the communicationwith the agent

which is over HTTP. This is a deliberate choice, since we wanted to

be compatible with existing OpenWhisk function images. This can

be reduced by using faster IPC mechanisms like in Nightcore [35].

However, these faster communication approaches would reduce

compatibility, especially with functions deployed inside VMs.

For OpenWhisk, a similar latency breakdown shows that a large

amount of time is spent reading/writing to CouchDB (up to half a

second), and the rest of the slowdown occurs in the Invoker (Open-

Whisk’s worker) and is primarily due to its design and implemen-

tation. Interestingly, the load-balancer/controller for OpenWhisk

adds less than 3ms of latency even under heavy load, indicating

that the worker-level performance is relatively more important.

This further motivates our worker-centric design and evaluation

focus.

3.3 Worker Performance Optimizations
To achieve this low latency function execution for heterogeneous

and bursty workloads, Ilúvatar uses two key underlying design prin-

ciples: resource caching, and asynchronous handling of function

life-cycle events.

3.3.1 Resource Caching. The cornerstone design goal of Ilúvatar is

to reduce jitter, which we accomplish by removing expensive oper-

ations from the function’s critical path. Instead, we cache and reuse

as many function resources as possible, which minimizes the “hot

path” function invocation latency significantly. This principle is

applied in various worker components, which we describe below.

Container Keep-alive. The primary and exemplary application

of resource caching is in the container keep-alive cache that Ilú-

vatar workers maintain. The containers become “warm” when their

function has finished execution, and become “available” for the

next invocation of the same function. We maintain a pool of all

Group Function Name Time (ms)

Ingestion & Queueing

invoke

sync_invoke

enqueue_invocation

add_item_to_q

0.026

0.013

0.017

0.02

Container Operations

spawn_worker

dequeue

acquire_container

try_lock_container

0.029

0.02

0.096

0.014

Agent Communication

prepare_invoke

call_container

download_result

0.154

1.364

0.032

Returning

return_container

return_results

0.017

0.266

Table 1: Latency of different Ilúvatar worker components
for a single warm invocation.

in-use and available containers for each registered function. This

container cache implements classic eviction policies such as Least

Recently Used (LRU), and size-aware policies like Greedy-Dual-

Size-Frequency, as proposed in FaasCache [30].

Network Namespace Caching. For isolation, each container is

provided with a virtual network interface and a network names-

pace. Through performance profiling, we’ve found that creating

this network namespace can add significant latency to container

cold starts—as much as 100ms. This is due to contention on a single

global lock shared across all network namespaces [44]. To minimze

this overhead, we maintain a pool of pre-created network names-

paces that are assigned during container creation. The isolation

is still maintained, since concurrently running containers do not

share the namespace.

HTTP Clients. The worker threads communicate with the in-

container agent for launching the function code. Instead of creating

a new HTTP client for every invocation, we cache a client per

container and use connection pooling. This affects all invocations

(even warm starts), and reduces the control-plane overhead latency

by up to 3𝑚𝑠 .

3.3.2 Async function life-cycle handling. The second key design

principle is to handle various aspects of the function’s lifecycle

asynchronously off the critical path. Ilúvatar achieves this through

background worker threads for certain tasks, and through its Rust

implementation which heavily uses asynchronous functions, fu-

tures, and callbacks wherever possible.

Keep-alive eviction. One such aspect is maintaining the function

keep-alive cache, and ensuring that new functions have enough

free memory to launch without waiting on existing containers to

be evicted first. Traditionally, eviction decisions would be made in

an online fashion, but picking victims and waiting for their removal

creates high variance in function execution times. Ilúvatar performs

container eviction from the keep-alive pool periodically in the

background, off the critical path. This is similar to the Linux kernel

page-cache implementation. We maintain a minimum free-memory

buffer for dealing with invocation bursts, and periodically sort the

containers list for eviction based on caching policies from [30].
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Function Queueing. An important component of Ilúvatar’s archi-

tecture is a per-worker function queue. New invocations are first

put into the queue, and are dispatched to the container backend

by a queue monitoring thread. This allows us to tolerate bursts of

invocations, and regulate the server load. Details of our queueing

policies are presented in Section 4.

3.4 Container Handling
Ilúvatar uses standard Linux containers for isolating and sand-

boxing function execution—a “vanilla” and conventional approach.

Several exciting new isolation mechanisms for cloud functions

have been proposed: such as lightweight VMs [13], unikernels,

WASM [59] and other language runtimes [19], etc. Importantly, the

sandboxing affects the cold start overheads, which account for a

tiny fraction of all invocations (usually less than 1%). Our control

plane design and performance optimizations are independent of the

sandboxing mechanism, and we address the orthogonal problem of

optimizing the warm starts.
The basic container operations we use are: i) Create a contain-

er/sandbox with specified resource limits and disk image/snapshot,

ii) launch a task inside it for the agent, and iii) destroy the container.

Each container is launched with the CPU and memory resource

limits. CPU limits are enforced with cgroup quotas. This limited

API allows Ilúvatar to support multiple container backends.
By default, we use containerd [2], which is popular container

library, also used by Docker. The very rich containerization ecosys-

tem presents a large number of options, and examining their trade-

offs was a major part of Ilúvatar’s design process. Importantly, the

choice of containerization library impacts the cold-start times, and

some library operations can take considerable time (100s of ms).

High-level container frameworks like Docker are feature-rich and

easy to use, but are typically used for long-running containers and

are not optimized for latency. Docker uses containerd under the

hood, and it provides more fine-grained control and slightly better

latency. Functions require a minimal containerization, and a lot

of feature-complexity in these large containerization libraries can

add to latency. For instance, the crun [7] library which is written

in C takes about 150ms to launch a container, whereas containerd

(written in Go) needs 300ms, and Docker needs 400ms.

Using containerd allows us to use the OCI container specifica-

tion [1], and makes it easier to support other container runtimes.

For instance, we also support the Docker container backend, which

required only a minimal programming effort. Containerd operates

as a separate service, and we use it’s RPC-based API, which con-

tributes to some latency as well. We contemplated writing our own

optimized container runtime in Rust to avoid the overheads due

to inter process communication, extra process forks and system

calls, and implement other cgroups and namespace optimizations.

However, we ended up going with containerd to keep our control

plane small and reusable across container runtimes. We also wanted

to investigate and tackle the challenge of getting predictable per-

formance out of higher level containerization services that are not

part of the same address space.

Simulation Backend. In addition to containerd and Docker con-

tainers, we also support a “null” container backend which is useful

for simulations and evaluating control plane scalability. Because of

the scale and variety of FaaS workloads, using discrete event simu-

lators for developing and evaluating resource management policies

is often necessary. For instance, the recent work on FaaS load bal-

ancing [31] uses such a simulator for evaluating their policies at

scale for different subsets of the Azure workload trace. Usually, the

simulation is used to augment and complement the “real” empirical

evaluation of the same policies which are implemented in FaaS

frameworks like OpenWhisk.

However, a major methodological and practical issue is that the

policy implementations, workload generation, and analysis, all need

to be duplicated across the simulator and the real system. This can

lead to subtle and large divergences between the simulation and

real environment. Moreover, the simulator cannot capture all the

real-world dynamics and jitter, and can suffer from poor fidelity.

In order to aid researchers, Ilúvatar takes a different approach to

simulations, and provides in-situ simulations. Our “null” container

backend does not run any actual function code, but instead sleeps

for the function’s anticipated execution time. The rest of the control

plane operates exactly as with real containers, and we still handle all

other aspects of the function’s lifecycle. This allows us to simulate

large systems and workloads. For evaluating any particular policy,

researchers can use the simulator null-backend to evaluate control-

plane overheads, warm-starts, etc., without requiring a large cluster.

Each Ilúvatar worker can “simulate” 100s of cores, since the CPU

resources are only being consumed by the control plane, and not

for running actual functions. Alternatively, a large cluster can be

simulated with multiple simulated workers.

With this approach, there is minimal difference between the simu-

lation and the real system. Thus an experiment can be run in-situ or

in-silico, following identical code paths. The main distinction is that

API calls to containerd are replaced with internal dummy function

calls, and function invocations are converted to sleep statements.

All control plane operations, control-flow, logging, resource limits

enforcement, etc., are exactly the same as with the “real” Ilúvatar.

This also helps with mocking and testing new policies.

4 FUNCTION INVOCATION QUEUEING
As a way to regulate and control function execution and worker

load, Ilúvatar incorporates a per-worker invocation queue architec-

ture. Function invocations go through this queuing system before

reaching the container manager, which either locates the warm

container and runs the function or creates a new container. Each

worker manages its own queue, differentiating our design from

OpenWhisk’s shared Kafka queue.

Motivation. This queuing architecture is motivated by three main

factors: i) the bursty nature of the workload , and ii) Reducing

cold starts due to concurrent invocations, and iii) to give workers

additional mechanisms for controlling their load, implementing

prioritization, etc. Note that once the function passes through the

queue, it is effectively “scheduled” for execution by the OS CPU

scheduler. The CPU scheduler of course has its own throttling and

controling mechanisms, such as cgroups and the various scheduler

tuning knobs. The invocation queue thus acts as a kind of a regulator

or a filter before the CPU scheduler, and ideally, “feeds” it the

right functions at the right rates for maximizing throughput and

minimizing latency.
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Because function workloads are so bursty and heterogeneous,

running each function immediately can significantly increase the

worker load and result in severe resource contention and increase

function tail latencies. The queue also helps as an explicit back-

pressure mechanism for load-balancing, admission control, and

elastic scaling. The queue length is used for accurately determining

the true load on the worker, which is a vital input to consistent

hashing with bounded loads [31]. This reduces the staleness and

noise of using system load average as the load indicator, and makes

load balancing more robust.

Queueing invocations also allows us to reduce cold-starts. While

repeated function invocations are good and increase warm starts,

concurrent invocations of the same function results in cold-starts

for all the concurrent invocations, since each invocation needs to be

run in its own container. This is also the “spawn start” [50], which

causes severe latency increase of 10s of seconds in public FaaS. If

there are𝑛 concurrent invocations that arrive at the same time, then

the 𝑛 concurrent cold-starts can significantly increase the system

load and affect latency of other functions. Instead, by queueing and

throttling the functions, we can wait for the invocation to finish,

and then use the warm container for the next function in this “herd”,

and so on and so forth.

4.1 Queue Architecture
Ilúvatar’s queue architecture is shown in Figure 2. We have three

main components. From right to left, first, we have a concurrency

regulator (or just regulator), which enforces the concurrency limit:
the upper-bound on the number of concurrently running functions.

This lets functions execute “on cpu” without timesharing, and effec-

tively determines the overcommitment ratio. Higher concurrency

limits (more than the number of CPUs) means more CPU overcom-

mitment. Note that even with overcommitment, the cgroup quotas

still provide proportional allocation (thus a 2 CPU container will

still get twice the CPU cycles compared to a 1 CPU container). In

addition to concurrency, other factors can also be used to regulate

the queue discharge rate. The regulator can be used to run functions

of only when sufficient resources (such as CPU bandwidth, warm

containers, or even accelerators like GPUs) are available.

Ilúvatar can be deployed with a fixed concurrency limit based on

the usage requirements, or use its dynamic concurrency limit mode.

In the dynamic mode, we use a simple TCP-like AIMD [69] policy

which increases the concurrency limit until we hit congestion,

which in our case is hit if the system load average increases above

some specified threshold. Other metrics are possible: looking at the

increase in execution time (i.e., stretch) of the functions could also

be used as a congestion metric. The concurrency limit affects the

tail-latency, and more advanced policies can be implemented.

The second component is a queueing discipline. In the sim-

plest case, we can use simple FCFS, and process functions in arrival

order. However, because functions are heterogeneous, this is not

always the most appropriate. Instead, we can use the past function

execution characteristics such as their cold/warm running times for

size-aware queueing such as shortest job first (SJF). We elaborate

more on the queueing policies in the next subsection.

Finally, we note that queueing may increase the waiting time for

small functions. We thus have a queue bypass mechanism, which

allows certain functions to bypass the queue and immediately and

directly run on the CPU. Bypass policies take the function running

time and the current system state as input. Currently, we implement

a short-function bypass, where functions smaller than a certain

duration are immediately scheduled, as long as the system is under a

load-average limit. More effective bypass policies can also consider

reinforcement learning approaches, since the action space is simple

(bypass or enqueue), and the system state is well defined (functions

running and in-queue, etc.).

4.2 Queueing Policies
We implement multiple queue policies which leverage the repeated

invocations of functions and use their learned execution character-

istics to determining each function’s priority. To accomplish this,

we maintain per-function characteristics such as cold time, warm

time, and inter-arrival-time (IAT). We maintain a priority queue

sorted by the function priorities, which are computed using their

characteristics like arrival and execution time.

FIFO is simplest and invocations are just sorted by their ar-

rival time. For prioritizing small functions, we leverage our bypass

mechanism, where the short functions can skip the queue and be

scheduled directly on the CPU. Optimizing queueing policies for

heterogeneous functions is challenging, and is an NP complete

problem even in the offline case [18].

For improving throughput, we use shortest job first (SJF), which

helps reduce the waiting time for short functions, but can lead to

starvation for longer functions if the queue never drains. As a trade-

off between function duration and arrival, Ilúvatar by default tries

to minimize the “effective deadline” of a function, which is equal

to the sum of its arrival time and (expected) execution time. This

earliest effective deadline first (EEDF) approach balances both short

functions and starvation. In both SJF and EEDF, an invocations’

execution time is determined by its (moving window) warm time.

New/unseen functions have their times set to 0, to prioritize their

execution. If we expect to find available containers for a function,

we use its (moving window) warm time as the execution time in

both SJF and EEDF. Otherwise, we use its cold time—this also helps

in reducing the concurrent cold starts, since the expected cold in-

vocations of some functions in a burst separates them in the queue,

and reduces the number of concurrently executing identical func-

tions. This spreading of function invocations over time increases

the warm starts and overall performance. Finally, the RARE policy

prioritizes the most unexpected functions (i.e., functions with the

highest IAT).

5 IMPLEMENTATION
Ilúvatar is implemented in Rust in about 13,000 lines of code. It will

be open-sourced upon paper acceptance. Its low latency and lack

of jitter are attributable to the various low-level profile-guided per-

formance optimizations we have implemented during the course of

its development and testing. Function handling and container man-

agement in the worker make up a majority of the implementation

footprint and focus. Ours is a heavily asynchronous implementa-

tion using the tokio library in Rust, and various function lifecycle

events spawn new userspace threads and trigger callbacks. The

major data structure shared by the various worker threads is the
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container pool, which is implemented using the dashmap crate,

which is a concurrent associative hashmap— this provides notice-

able latency improvements compared to a mutex or read-write lock.

Conversely, we still use a mutex for the queue, since we found mini-

mal performance degradation compared to a no-queue architecture

during profiling. These, and many other small optimizations, keep

the Ilúvatar resource consumption small: even under a heavy and

sustained load that saturates a 48 CPU server, the worker process

uses less than 20% of a single CPU core.

5.1 Support for FaaS research
One of our major design goals is for a reliable and extensible plat-

form for performance-focused FaaS research. We now describe

some of the Ilúvatar features and our experiences in extending it.

Performance Metrics. We keep track of all internal and external

function metrics (such as their cold/warm execution time histo-

ries, inter arrival times, memory footprints, etc.) and provide them

to all components of the control plane, and also to external ser-

vices. One of Ilúvatar’s implementation goals was to reduce the

reliance on external services for system monitoring etc. We thus

track key system metrics like CPU usage, load averages, and even

CPU performance counters and system energy usage using RAPL

and external power meters. These metrics are collected using async

worker threads, and provide a single consistent view of the system

performance. Additionally, we also use and provide Rust-function

tracing for fine-grained performance logging and analysis. We use

the tracing crate to instrument the passage of invocations through

the control plane components, and obtain detailed function level

timing information, which is used for identifying control plane and

container-layer bottlenecks.

Adding New Policies and Backends. Using function and system

metrics allows for easy development of data and statistical learn-

ing based resource management policies to be implemented. Our

baseline policy implementations for keep-alive eviction, queueing,

load-balancing, are all easily extensible using Rust traits, polymor-

phism, and code generation. In our experience, adding new policies

is relatively straight-forward, even for new-comers. For example,

all the priority-based queueing policies (SJF, EEDF, RARE, etc.) were

implemented by extending the base FCFS policy. Implementing and

testing these policies took less than a few dozen lines and about

four hours for a graduate student unfamiliar with the code-base.

The default container runtime backend is containerd, but the
interface is small, and supporting new backends is relatively easy.

We added Docker support in about 400 lines and one person-day of

development effort.

Load-generation and Testing. In the spirit of providing a sin-

gle platform for FaaS experimentation, we have developed a load-

generation framework. It can do closed and open loop load genera-

tion, and be parameterized by the number and mixture of functions,

their IAT distributions, etc. The testing framework can use func-

tions from FaaS suites like FunctionBench [40], or custom sized

functions that run lookbusy [20] for generating specific CPU and

memory load. The open-loop generation produces a timeseries of

function invocations, which is helpful for repeatable experiments.

The functions’ IAT distributions can be exponential, or be derived

from empirical FaaS traces like the Azure trace [56].

For the Azure trace, we start by randomly sampling functions

and computing the CDF of their IATs. We compute the expected

load level in the system using Little’s law, by finding the expected

number of concurrent invocations for each function and adding

them for all functions. This expected load can be significantly differ-

ent from the capabilities of the system under testing (for example,

100 concurrent functions will overload a 12 core system). Therefore,

we can scale the individual function IAT CDFs to find a suitable load.

This also allows us to change the relative popularities of individual

functions, and conduct fine-grained sensitivity experimentation

(like examining system performance when the popularity of one

single function changes, etc.). We can generate larger traces by

layering, and merging the traces from multiple smaller workloads.

For synthetic functions (using lookbusy), we use their distribu-

tion of running times and memory consumption when generating

the workload. When using real functions from a benchmark-suite

like FunctionBench, for each randomly sampled function, we use

its average execution time (from the full trace), and assign it the

closest function in the suite. For example, if the average running

time of a candidate function in the Azure trace is 8 seconds, we

represent it using the ML-training function, which has the closest

running time of 6 seconds.

6 EXPERIMENTAL EVALUATION
We have extensively tested Ilúvatar’s performance characteristics

throughout its development. Here, we present a limited set of its key

performance attributes and focus on new insights into FaaS perfor-

mance. All our experiments are conducted on a 48 core Intel Xeon

platinum 8160 CPU, and we restrict the worker to 32 GB memory,

running Ubuntu 20.04 using Rust version 1.67.0 and Tokio library

version 1.19.2. We are interested in evaluating latency overheads

and Ilúvatar’s suitability as a low-jitter research platform. This eval-

uation focuses exclusively on the performance of the worker, where

we think most per-invocation latency improvement opportunities

exist. Many effective load-balancing policies have been published,

but their impact on latency is limited to balancing decision time and

warm start ratio. Our stateless controller’s overhead is consistent at

less than 0.5ms, and we can thus ignore its latency contribution, for

ease of exposition. Our CH-BL based load-balancer maximizes lo-

cality and provides 99% warm starts, and we focus on single-worker

performance to remove unnecessary confounding factors.

6.1 Control Plane and Function Performance
In this subsection, we focus on the latency overheads of Ilúvatar un-

der different workloads and configurations. For these experiments,

we do not use any queueing, use a single worker, and focus on the

most basic Ilúvatar configuration.

We start by examining the control plane overheads under a

closed-loop load for 30 minutes generated by different number of

client threads. The control plane overhead CDF for the AES function

is shown in Figure 4. With 48 concurrent client threads, all the

CPUs are fully utilized by function execution. Even in this saturated

case, the 90 percentile overhead is less than 20ms. Just below this

saturation limit, with 46 threads, the 90 percentile overhead drops

to less than 10ms, and the average is less than 3ms.



Ilúvatar: A Fast Control Plane for Serverless Computing HPDC ’23, June 16–23, 2023, Orlando, FL, USA

1×
10

1

2×
10

0

3×
10

0

5×
10

0

2×
10

1

3×
10

1

Control Plane Overhead (ms)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F 
of

 In
vo

ca
tio

ns

1
2
4
8
16
32
46
48

Figure 4: Ilúvatar provides low latency overhead across a
range of concurrent invocations.

We now provide a more detailed breakdown of the function la-

tency. In Figure 5, we look at the end to end (E2E) function latency

(i.e., flow time) and execution time of different representative func-

tions under different loads. The flow time is impacted by the control

plane overhead and the function code execution time. Both these

factors are affected by the system load, which in turn is affected

by the concurrency level. The difference between the E2E and the

function execution time is the control plane overhead, which is

small for all functions and at all load levels.

Interestingly, a significant source of latency variance is the func-

tion execution time itself. For the small, CPU-intensive PyAES

function (Figure 5a), the inter-quartile-range is 60ms, which is 20%

the average execution time. Both the execution time (and hence the

E2E latency) and the variance also increases with the system load.

This variance is also determined by the non-determinism in the

function code. For instance, the JSON function (Figure 5b) parses a

random json file on every invocation, and thus has a higher natural

variance in its execution time. Finally, the video processing function

is long and CPU intensive: it downloads and converts a video to

grayscale. This magnifies the CPU contention, and the function

latency increases from 6 to 9 seconds under heavy load.

The notable increase in execution time for all three functions is

a result of high CPU cache miss percentage and a reduction in the

instructions per cycle (IPC). We also observed poor cache locality

with an increasing number of CPU cores. When the same workload

was run on half the number of CPUs (by disabling the rest of the

CPU cores), the cache miss percentage significantly dropped (by

more than 50%), along with a proportionate reduction in the latency

variance. This highlights and emphasizes the deeper architectural

challenges of FaaS, which were also shown by [55].

Result: Ilúvatar overheads are small even under heavy load. Function
code non-determinism and system load have a higher impact on the
function execution times.
Cold-starts. So far we have focused on warm-start performance

which dominates function workloads. Ilúvatar also incorporates a

few optimizations for cold-starts. Specifically, we are interested in

quantifying the impact of the different container backends (con-

tainerd and Docker), and the network namespace caching optimiza-

tions. The end to end cold times for various functions are shown

in Figure 6: this includes both container startup time and function

initialization overheads. In general, smaller functions face a larger

impact due to the cold starts, since it represents a higher percentage

of their total flow time.

For small functions (left axis of the figure), using containerd

(without network namespace caching) reduces the cold-start by

more than 40%, indicating a clear advantage of using a lighter con-

tainer runtime. Introducing the namespace caching further reduces

the cold-start times by 15% compared to unoptimized containerd

which creates a new network namespace for each new container.

After using the namespace cache, each function invocation sees

upwards of 100𝑚𝑠 improvement in their cold start time. The effects

also hold for larger functions (right axis of Figure 6), where Docker

increases both the average and variance of the latency.

6.2 Queueing Performance
Having seen Ilúvatar performance in closed-loopmicro-benchmarks,

we now investigate the impact of its various queueing components

and policies. We use our open-loop load-generation capabilities

described in Section 5.1. Specifically, we use a random selection of

21 functions from the Azure traces, and pair them with different

functions based on their closest running times. This “stationary”

workload has an average 40 requests per second for 30 minutes.

This represents an extremely heterogeneous workload in terms of

function durations and IATs. Additionally, we also show results

from a “bursty” workload generated in the same way, but with

one function generating a burst of 18 requests per second for one

minute. In this open-loop testing, we prewarm the function contain-

ers to prevent excessive cold-starts immediately at the start of the

workload. The number of containers to prewarm for each function

is determined using Little’s law by using their average rates and

execution times.

Metrics. We use multiple performance metrics to understand and

compare different policies. Since functions can differ in execution

time, we always normalize their total latency (flow time) by their

execution time in an unloaded system. As shown in the previous

figures 5, even with 1 closed-loop thread, the execution time has

variance. For normalization, we use the average execution time

with 1 thread for all the functions. Second, function popularities

can also vary widely. We thus compute the weighted latency, where

each function’s normalized latency is weighted by the number of

its invocations in the trace. Thus, the weighted latency represents

the latency per-invocation.
Saturation Testing.We are primarily interested in how the differ-

ent queueing policies impact the waiting time (which is part of the

control plane overhead), and the function performance. The anal-

ysis of queueing is interesting only in saturated scenarios, where

there is enough extra load on the system and not all invocations

can immediately run on the CPU. We find this saturation point by

weak scaling, and decreasing the number of CPU cores available to

Ilúvatar (by disabling CPU cores using hot-unplug). The weighted

and normalized latencies for different number of CPUs is shown in

Figure 8, which shows the performance without queuing. We see

that for our baseline trace, increasing the number of available CPU

cores has diminishing returns: the per-invocation latency doesnt

benefit when CPUs are increased from 18 to 48. However, we also

see a sharp inflection point at 16 cores: decreasing the size to 14
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Figure 6: Most functions benefit from using a lower-level
containerization and OS object caching on cold starts.

cores results in a very high, almost 6× slowdown. At 16 cores, our

workload saturates the system, and we use this system configura-

tion for all our queueing analysis. We note that the alternative is

to scale the workload up and run on on all 48 cores. However, as

we have shown previously through Figure 5, the poor hardware

locality results in higher variance in the function execution times,

and introduces more performance variance. This variance often

masks the control plane jitter, which is of more interest to us.

Impact of Overcommitment.Many frameworks like OpenWhisk

inadvertently overcommit CPUs by running more functions than

available CPU cores. Ilúvatar can control the degree of overcom-

mitment through its concurrency limit queue regulator. Figure 7a

shows the effect of this overcommitment, when the EEDF (earliest

effective deadline) queue policy is used. The worker is limited to

CPU cores, so higher concurrency limits represent different degrees

of overcommitment. As the concurrency limit is increased, we see a

reduction in the queueing time (which is a major part of the control

plane overhead). For instance, the queueing overhead is negligi-

ble when overcommitment level is 2 (i.e., 32 concurrency limit).

However we can see a tradeoff: the increased concurrency risks

performance interference, and the code execution time also slightly

increases (by 4%). For comparison and as a baseline, we also show

the “no queue” configuration which is pure processor sharing and

there is no limit on CPU overcommitment. Queueing also reduces

cold starts due to concurrent invocations. Without queueing, the

number of cold-starts increased by more than 3×.

For the bursty workload, the impact of overcommitment is even

more drastic, as shown in Figure 9a. A slight increase in concurrency

limit can reduce the weighted latency by more than 3×, indicating
that overcommitment is more effective for burstier workloads. Inter-

estingly, the latency improves by 20% with queueing as compared

to the “infinite overcommitment” no queueing case. This is due to

the increase in function execution time due to uncontrolled CPU

contention and interference, which the queue helps ameliorate.

Result: CPU overcommitment can reduce queueing times, but come
with risk of increased performance interference. Ilúvatar’s queue de-
sign provides a new effective “knob” for managing this tradeoff.
Queueing Policies and Fairness. Next, we look at the perfor-

mance impact of the different queueing policies themselves. We are

interested in the impact on the latencies of the different functions.

Figure 7b shows the normalized latencies of different functions

with the different queueing policies. This scenario has a significant

amount of queueing: the concurrency limit is set to 16 (the num-

ber of CPUs). The function-size aware policies like SJF and EEDF

provide much lower latency compared to the standard FCFS: the

average latency is reduced by more than 2 − 3×.
A breakdown of the latency of individual functions in Figure 7c

helps understand this stark performance difference. The queueing in

FCFS increases the total time of the extremely small “web” function

(13ms running time), which increases its latency by 30×. The small-

function prioritization by SJF and EEDF reduces this significantly.

The impact of queueing for the bursty workload is even more

interesting, as shown in Figure 9b. EEDF’s average latency is 2×
higher than simple FCFS, while SJF is 60% lower than FCFS. In-

vestigating the per-function breakdown again in Figure 9c again

points to the contribution of the small web function, which is also
the bursty function. The bursty invocations trigger the cold-start

mitigation, which deprioritizes them, and increases the queueing

time, which disproportionately impacts the small functions.

Result: Incorporating both function size and arrival times can im-
prove function latency and fairness significantly. Very small functions
see a higher % increase due to queueing.
Ilúvatar vs. Little’s law vs. Simulation. Finally, we want to show
Ilúvatar’s suitability for performance modeling, capacity planning,

and as a research platform for developing and evaluating FaaS re-

sourcemanagement policies.We compare the number of concurrent

function invocations and queue length (EEDF) with the expected

load according to Little’s law, computed using average arrival rates
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Figure 7: Queueing performance on the stationaryAzureworkload. Size-based policies can provide significant latency benefits.
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Figure 8: The per-invocation function latencies for different
system sizes (# CPUs). We see a sharp inflection point at 16
CPUs, and use that in our queueing evaluation.

and execution times of all functions of our stationary trace. We see

that the real system metrics, even with all the inherent burstiness

in the Azure trace, and the function execution and control plane

jitter, are on average very close to the Little’s law estimate. This

strongly indicates that our performance is indeed predictable even

with highly heterogeneous workloads.

Additionally, Figure 10 also shows the output of our “simulation”

container backend described in Section 3.4. This backend doesn’t

run actual function code, but exercises all other control plane as-

pects. We use constant average function execution times (without

accounting for variance and stochasticity) for all invocations. Even

though this simulation setup doesn’t capture real-world variability

and the impact of server load on function performance, we see

that the simulation is also fairly closely aligned with the real ex-

periment output. This shows that Ilúvatar’s integrated simulation

framework captures sufficient system dynamics and provides high-

fidelity simulations. This can significantly accelerate FaaS research,

especially advances in reinforcement learning based scheduling,

which requires high-quality simulations for learning policies.

Discussion.Ourworker-centric design allows us to focus on single-
worker performance. The load balancer is stateless and uses consis-

tent hashing with bounded loads, and has a small overhead of less

than 0.5 ms. Without workers sharing state (like with OpenWhisk’s

shared queue), there is no/minimal performance interference, and

hotspots are confined in space and time.

Finally, our performance comparison with OpenWhisk is based

on end-to-end latency testing. Performance tracing of OpenWhisk is

challenging due to the highly distributed nature, and the drastically

different architectures prevent a clean side-by-side comparison

vs. the various Ilúvatar components. The use of Rust vs. Scala

provides some performance gains as well, but all our OpenWhisk

evaluation was conducted with ample heap sizes to reduce extra

garbage collection overheads.

7 RELATEDWORK
Ilúvatar occupies a somewhat unique spot in the crowded FaaS land-

scape because of its focus on warm starts and some key constraints

in our system design. Techniques for reducing cold-start overheads,

like snapshots, language isolation, unikernels, all sit “below” the

control plane, and can be complemented with fast control planes.

At the other extreme end, the predictable nature of serverless work-

loads has been used to great effect for predictive load-balancing,

prefetching, sizing, etc. Ilúvatar is mostly reactive and is worker-

centric, and tries to make minimal assumptions about workload

predictability and focuses on more general optimizations that can

work for arbitrary workload patterns.

FaaS Control Planes. SOCK [44] is closely related to Ilúvatar, and

makes similar observations about network namespace overheads,

and introduced storage and cgroup optimizations for serverless

optimized containers. SOCK is based on OpenLambda [34] and

achieves great cold-start performance with Zygotes that are cloned

into new containers. These optimizations to the container runtime

are also applicable to Ilúvatar and are complementary. Using the

standard containerd interface allows us to use multiple current and

future container backends, and is a deliberate tradeoff. Importantly

it lacks both the ability to operate as a cluster and an integrated

load generation system, both of which we have implemented both

in Ilúvatar .

Nightcore [35] is an integrated control plane and runtime sys-

tem for low-latency microsecond-scale microservices. It essentially

implements containerized RPC, and uses fast message passing be-

tween the control plane and the agent. Its special container runtime

precludes generic “black box” functions, and it provides a weaker

isolation model by running functions concurrently within the same

container. In the microservice context, container management and

scheduling, dealing with heterogenenous functions, and other chal-

lenges are not relevant.

Atoll [61] is a fast and highly scalable control plane, and hugely

benefits from pre-allocation and prediction. It has a two level load-

balancing setup with functions scheduled to a cluster group which

then places them on a worker. Ilúvatar’s design and contributions
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Figure 9: Small and bursty functions can get disproportionately impacted due to queueing. A little overcommitment can go a
long way to reduce latency.
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Figure 10: Ilúvatar running in-silico closely models the in-
situ performance. Making it a viable exploration opportu-
nity supplementing real experiments.

are orthogonal to Atoll’s more top-down and predictive approach,

and we focus on the “low-level” worker problems.

Popular open-source control planes like OpenWhisk, OpenFaaS [9],

nuclio [10], and kNative [11], are an important basis for optimizing

performance. They tackle the competing demands of modularity

and features, along with supporting function executions in generic

environments. OpenWhisk’s cold and warm performance has been

analyzed in many prior works such as [49] and also as part of

other systems [16, 30, 31, 53]. OpenWhisk scheduling design and

improvements can be found in [31, 39]. Tighter latency require-

ments exist when deploying functions at the edge, andOpenWhisk’s

use on lower powered devices presents even more latency trou-

bles [33, 45, 46, 67]. Interestingly, public cloud latencies are also

significant, of the order of 50 ms [65], hinting that the problems

also extend their control planes. All four of these control planes rely

on Docker and Kubernetes for their deployment and scaling mech-

anisms. These existing tech stacks are highly useful, but limit the

research possibilities of a platform, e.g. cold-start optimizations and

deploying to edge nodes become intractable. While Ilúvatar does

have a Docker isolation implementation, it is to showcase the abil-

ity implement multiple containerization mechanisms and compare

between them.

Function Scheduling. Concurrent to our efforts, queuing of func-
tion invocations has been proposed in [73], which implements

various size-aware policies like SJF. Surprisingly, and perhaps due

to OpenWhisk overheads, their function slowdowns are extremely

high: of more than 10, 000×. An earlier theoretical queueing analy-

sis of flow and stretch metrics is also presented in [74]. In contrast

to Ilúvatar’s worker-centric design, a centralized core-level alloca-

tion design is presented in [37]. In FaaS clusters, the tradeoffs in

load balancing and early/late binding are evaluated in [38]. Local-

ity [31] and ML-based [70] techniques for FaaS load-balancing take

advantage of the high temporal locality and predictability of the

FaaS workloads. Our effort is more focused on reactive systems,

and adding predictive allocation will only improve it.

OS scheduler improvements can also improve FaaSworkloads [29].

Regulating Linux CPU cgroups shares is also effective in over-

commitment [63]. Evaluating the effectiveness of these schedul-

ing improvements when juxtaposed with queueing will be inter-

esting. Scheduling function workflows and DAGs are a growing

area [42, 58, 72], and we focus on single-invocation optimizations.

8 CONCLUSION
Ilúvatar a fast, modular, and extensible FaaS control plane. It is

implemented in Rust in about 13,000 lines of code, and introduces

only 3ms of latency overhead under a wide range of loads. Its

worker-centric architecture, resource caching based design, queue-

based overcommitment and scheduling, and careful asynchronous

implementation, all contribute to low latency and jitter.

Ilúvatar is open source, and intended to serve as a platform for fu-

ture high-performance FaaS research and deployments. In the near

future, we intend to incorporate support for Firecracker [13] VMs

and GPUs; investigate load balancing optimizations; and deploy

Ilúvatar on HPC and cloud clusters.
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