
SERVERLESS CONTROL PLANES

FOR ORCHESTRATION OF CLOUD RESOURCES

Alexander Joseph Fuerst

Submitted to the faculty of the Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in the Luddy School of Informatics, Computing, and Engineering

Indiana University

July 2024

Accepted by the Graduate Faculty, Indiana University, in partial fulfill-

ment of the requirements of the degree of Doctor of Philosophy.

Doctoral Committee
Prateek Sharma, PhD

(Chair)

Martin Swany, PhD

Dingwen Tao, PhD

Eleftherios Garyfallidis, PhD

July 17th, 2024

ii

Copyright © 2024

Alexander Joseph Fuerst

iii

Veni Sancte Spiritus

iv

ACKNOWLEDGEMENTS

My parents for visiting often and supporting me throughout working on this, and

my entire family. The priests at St Paul’s Catholic Center and the friends I made

there, especially Larry Gates, Ody Ekwonwa, and Dana and Trevor Farkas. Andrew

and Amanda Holland, and the kind pastor and people of All Saints Orthodox Church.

All my ISE friends and fellow board game connoisseurs Chanaka Hettige, Jong Sung

Park, Juliette Zerick, Abdul Rehman. My advisor Prateek for the guidance over these

years. All the members of my defense committee.

v

Alexander Joseph Fuerst

Serverless Control Planes for Orchestration of Cloud Resources

Cloud computing is comprised of a variety of services and abstractions to reduce

the complexity of building and running applications. Function as a Service is a

unique abstraction amongst the many: user supplied code entirely managed by the

cloud provider. Serverless control planes face unique challenges caused by the highly

heterogeneous workloads predominant. Users run machine learning inference, web

services, multimedia analysis, and even scientific computing, to the tune of billions of

invocations per day. These, in turn, vary widely in resource usage, execution time,

and frequency of invocation, which the control plane must handle efficiently. It must

also handle problems like cold start overheads neccessitated by executing invocations

within isolated containers, and resource underutilization during idle periods.

This thesis addresses performance and resource management challenges by develop-

ing novel system designs and tailoring algorithms to handle these workloads. In it, we

detail several algorithms that tackle poor resource allocation and load scheduling at

both individual server and cluster levels. The key finding of orchestration at both levels

is the reliance on function characteristics in decision-making. In addition, we describe

a redesigned control plane, Ilúvatar, that reduces latency spikes by 100x in existing

open-source systems. This is primarily accomplished by disaggregating scheduling

decisions to avoid contention between distributed services of the control plane. Finally,

we leverage the high degree of resource control made possible by this new system

to integrate GPU acceleration into the serverless ecosystem. This uses a variety of

novel mechanisms to minimize overhead despite limited device resources, boosting

performance by several orders of magnitude over baseline solutions. Altogether, the

vi

contributions of this thesis serverless improve latency by 75% and cluster resource

utilization by up to 20x.

vii

CONTENTS

Dedication . iv

Acknowledgements . v

Abstract . vi

List of Tables . xiii

List of Figures . xiv

Abbreviations . xviii

1. Introduction . 1

1.1 Thesis Outline . 8

2. Background: Serverless computing and Function as a Service 12

2.1 What is Serverless Computing? . 12

2.1.1 Function Isolation . 16

2.2 Virtualization for FaaS . 17

2.2.1 Virtual Machines . 17

2.2.2 VM Resource Management . 18

2.2.3 Containers . 18

2.3 Serverless Control Plane Research . 19

2.3.1 Workload Characterization . 19

2.3.2 Cold Start Mitigation . 20

viii

2.3.3 Load Balancing . 23

2.3.4 Heterogeneous Hardware . 24

2.3.5 Serverless Data-plane . 24

2.4 Application Mitigations of Control Plane Deficiencies 25

2.5 Serverless Applications . 25

2.5.1 ML in Serverless . 26

2.5.2 Scientific Serverless Computing 26

3. Keeping Serverless Computing Alive with Greedy-Dual Caching 27

3.1 Caching Background . 28

3.2 Keep-alive Tradeoffs . 29

3.2.1 Policy Goals and Considerations 32

3.3 Caching-based Keep-Alive Policies . 34

3.3.1 Greedy-Dual Keep-Alive Policy 35

3.3.2 Other Caching-Based Policies 39

3.4 Server Provisioning Policies . 40

3.4.1 Static Provisioning . 41

3.4.2 Elastic Dynamic Scaling . 44

3.5 Implementation . 46

3.6 Experimental Evaluation . 48

3.6.1 Trace-Driven Keep-Alive Evaluation 50

3.6.2 OpenWhisk Evaluation . 56

3.6.3 Effectiveness of Provisioning Policies 58

3.7 Related Works . 59

3.7.1 Comparative Works . 61

3.8 Conclusion . 61

ix

4. Load- and Locality-Aware Load Balancing 63

4.1 Background: Load Balancing . 64

4.1.1 Consistent Hashing . 66

4.2 Load-aware Consistent-Hashing . 66

4.2.1 Tradeoff between Locality and Load 67

4.2.2 Key Principle: Load-based Forwarding 68

4.2.3 Server Load Information . 69

4.2.4 Why CH-BL Is Insufficient . 70

4.2.5 Incorporating Function Performance Characteristics 71

4.2.6 Handling Bursts . 72

4.2.7 Putting it all together: CH-RLU 75

4.3 Function Prioritization . 76

4.3.1 Can Serverless Functions be Delayed? 77

4.3.2 High- and Low-Priority Workloads 77

4.4 Priority Based Consistent Hashing 79

4.4.1 Quality of Service Architecture 79

4.4.2 k-CH-RLU . 80

4.5 Implementation . 81

4.5.1 Performance Optimizations For OpenWhisk 83

4.6 Evaluation . 85

4.6.1 Evaluation Environment . 85

4.6.2 Load-balancing Performance 88

4.6.3 Multi-pool Load-balancing Performance 94

4.7 Related Work . 97

4.7.1 Load Balancing Related Work 97

4.7.2 QoS Related Work . 98

4.8 Conclusion . 100

x

5. Ilúvatar: A Low-Latency FaaS Research Control Plane 101

5.1 Why a new control plane? . 101

5.1.1 FaaS Control Planes . 102

5.2 Ilúvatar Design . 107

5.2.1 Architecture and Overview . 108

5.2.2 Function Lifecycle . 110

5.2.3 Worker Performance Optimizations 112

5.2.4 Container Handling . 115

5.3 Function Invocation Queuing . 118

5.3.1 Queue Architecture . 119

5.3.2 Queuing Policies . 121

5.4 Implementation . 122

5.4.1 Support for FaaS research . 123

5.5 Experimental Evaluation . 125

5.5.1 Control Plane and Function Performance 126

5.5.2 Queuing Performance . 130

5.6 Related Work . 137

6. Opportunistic GPU Acceleration for Serverless Functions 141

6.1 Background and Motivation . 142

6.1.1 Why GPU Acceleration for Functions 142

6.1.2 GPU Programming Model . 143

6.2 Design Requirements and Key Challenges 144

6.2.1 Cold-starts for GPU Containers 145

6.2.2 Tradeoffs in Locality, Throughput, and Fairness 146

6.2.3 GPU Multiplexing Mechanisms 147

6.3 Design: Scheduling GPU Functions 149

6.3.1 Key Insight: GPUs as Multi-Queue I/O Devices 149

xi

6.3.2 MQFQ-Sticky: Locality-enhanced Fair Queuing 151

6.3.3 Integrated Memory Management and Scheduling 155

6.3.4 Multi-GPU Load Management and Feedback 157

6.4 Implementation and Microbenchmarks 158

6.4.1 CUDA Interposition Shim . 160

6.4.2 Memory Management . 162

6.5 Experimental Evaluation . 164

6.5.1 GPU Scheduling Performance 166

6.5.2 Scaling . 168

6.5.3 Impact of Scheduling Parameters 172

6.6 Related Work . 176

7. Future Work and Conclusion . 178

7.1 Future Work . 178

7.1.1 Work Stealing Scheduling . 178

7.1.2 Polymorphic Functions . 179

7.1.3 Serverless for Distributed Computing 180

7.1.4 FaaS Security . 181

7.2 Conclusion . 183

Bibliography . 185

Curriculum Vitae .

xii

LIST OF TABLES

2.1 FaaS workloads are highly diverse in their resource requirements and
running times. The initialization time can be significant and is the
cause of the cold start overheads, and depends on the size of code and
data dependencies. 17

2.2 FaaS workloads are highly diverse in their resource requirements and
execution times. The initialization time can be significant and is the
cause of the cold start overheads, and depends on the size of code and
data dependencies. 21

3.1 Size and inter-arrival time (IAT) details for the Azure Function work-
loads used in our evaluation. 49

3.2 FaaS workloads are highly diverse in their resource requirements and
running times. The initialization time can be significant and is the
cause of the cold start overheads, and depends on the size of code and
data dependencies. 57

5.1 Latency of different Ilúvatar worker components for a single warm
invocation. 113

6.1 Latencies (in seconds) for GPU and CPU Warm and Cold functions. 142

6.2 Key symbols and parameters for MQFQ-Sticky. 152

6.3 The latency benefit of MQFQ-Sticky improves with increasing GPU
utilization. 169

6.4 Hybrid CPU+GPU reduces latency by more than 2x compared to
CPU-only and GPU-only execution. 170

xiii

LIST OF FIGURES

1.1 The major components of the control plane, and the areas of each
this thesis impacts. A controller accepts invocations for functions and
distributes them amongst a cluster of workers. These in turn run
invocations in isolated sandboxes . 5

2.1 A common architecture for serverless control planes. A controller
distributes invocations to workers who run them inside containers. . . 13

2.2 A classic serverless function: simple Python code performing ML infer-
ence on image data. In this example library and model initialization
are done before execution starts. 14

2.3 Functions have varied tasks and implementation languages. This
JavaScript function is designed to operate a microservice as part of a
larger application. 15

2.4 Different layers of abstraction between hardware and kernel based
virtualization. 18

2.5 A CDF of daily invocations for functions. Invocation frequencies taken
from an Azure dataset range from sub-second to less than one per day.
Figure from [211] . 20

3.1 Timeline of function execution and sources of cold start delay in Open-
Whisk for an ML inference application. 31

3.2 Hit ratio curve using reuse distances show slight deviations from the
observed hit ratios due to dropped requests at lower sizes, and concurrent
executions at higher sizes. 43

3.3 FaasCache system components. We build on OpenWhisk and augment
it with new keep-alive policies and a provisioning controller. 46

3.4 Increase in execution time due to cold starts for different workloads
derived from the Azure function trace. 52

xiv

3.5 Fraction of cold starts is lower with caching-based keep-alive. 55

3.6 FaasCache runs 50 to 100% more cold and warm functions, for skewed
workload traces. 56

3.7 FaasCache increases warm-starts by more than 2×, which also reduces
system load and dropped functions. 57

3.8 With dynamic cache size adjustment, the cold starts per second are
kept close to the target (horizontal line), which reduces the average
server size by 30%. 59

4.1 Consistent hashing runs functions on the nearest clockwise server.
Functions are forwarded along the ring if the server is overloaded. . . 65

4.2 Left: CDF of the function durations. Right: CDF of the average
function inter-arrivals. Functions are divided into two classes: high and
low priority. 78

4.3 k-CH-RLU partitions a cluster into multiple server pools and runs server-
load-aware consistent hashing in each pool. Functions are forwarded if
servers are overloaded, or to a lower-priority pool if the entire pool is. 79

4.4 System diagram of relevant OpenWhisk components and communication
used to schedule and run function invocations. 82

4.5 Latency and throughput under low-load. Locality-agnostic least-loaded
policy has more cold starts and a higher impact on latency. 86

4.6 At high server loads, our RLU policy reduces average latency by 2.2x
at higher throughput, compared to OpenWhisk’s default policy. It does
so by keeping cold starts and load-variances low. 89

4.7 RLU improves latency by 10% compared to OpenWhisk under bursty
load conditions, while keeping a low worker load variance. 91

4.8 Global latency impact under a 30-minute long rising burst load from
an open-loop generator. RLU reduces latency by 17% compared to
OpenWhisk. 92

4.9 The average normalized function latency over time for a dynamic
workload. New invokers are launched at the dashed lines, keeping the
latency in check. 93

4.10 Function prioritization improves latency for both high and low priority
functions, and provides significant service differentiation and improve-
ment over OpenWhisk. 95

xv

4.11 Latencies on a 25% smaller cluster. High-priority functions see a 2×
decrease vs. OpenWhisk. 96

4.12 fixed-tput . 97

5.1 The latency overhead of the control plane, as the number of concurrent
invocations increases. OpenWhisk overhead is significant and has high
variance, resulting in high tail latency. Ilúvatar reduces this overhead
by 100x. 104

5.2 Ilúvatar has a worker-centric architecture. A per-worker queue helps
schedule functions, and regulate load and overcommitment. 109

5.3 The main components of the Ilúvatar overheads. 111

5.4 The latency overhead of the control plane, as the number of concurrent
invocations increases. OpenWhisk overhead is significant and has high
variance, resulting in high tail latency. Ilúvatar reduces this overhead
by 100x. 126

5.5 End-to-end latency and execution times for different functions as we
increase the concurrency levels. 128

5.6 Most functions benefit from using a lower-level containerization and
OS object caching on cold starts. 129

5.7 Queuing performance on the stationary Azure workload. Size-based
policies can provide significant latency benefits. 131

5.8 The per-invocation function latencies for different system sizes (#
CPUs). We see a sharp inflection point at 16 CPUs, and use that in
our queuing evaluation. 132

5.9 Small and bursty functions can get disproportionately impacted due to
queuing. A little overcommitment can go a long way to reduce latency. 134

5.10 Ilúvatar running in-silico closely models the in-situ performance. Mak-
ing it a viable exploration opportunity supplementing real experiments. 137

6.1 Timeline of cold-starts of CPU (top) and GPU (bottom) function
containers running TensorFlow inference code. GPU initialization and
code dependencies increase latency by three seconds. 145

6.2 Scheduling GPU functions as flows with Multi-Queue Fair Queuing.
Invocations are dispatched based on the virtual time. The container
pool helps with warm starts. 150

xvi

6.3 Functions see little to no impact from our interception and substitution
of allocation calls. This matches performance promised by Nvidia for
UVM applications. 160

6.4 Active memory management (Prefetch+Swap) improves execution la-
tency. 162

6.5 Device utilization for the medium-load trace. 166

6.6 Average latency for a medium-intensity workload is significantly
lower with MQFQ-Sticky for different device-parallelism (D) levels. . 167

6.7 The average and variance of per-function latency under a medium-
intensity workload is much lower with MQFQ-Sticky. 168

6.8 MQFQ-Sticky also uses locality-aware scheduling for multiple GPUs,
significantly reducing queuing. 169

6.9 Container-pool reduces cold-starts. MQFQ-Sticky provides higher locality.171

6.10 Larger T yields more batching and lower latencies because it allows
popular flows to run ahead. Using historical function execution latencies
helps significantly compared to uniform flow costs in classical fair queuing.172

6.11 Anticipatory flow keep-alive (non-zero flow TTL) can reduce latency
by up to 50%. We use function IAT for scaling the TTL. 173

6.12 Concurrent function invocations (D) increase execution time due to
contention. GPU utilization thresholds reduce overload. 174

6.13 Concurrent execution can reduce latency by reducing queuing. However,
this is negated by execution interference at higher levels. 175

xvii

ABBREVIATIONS

ABI: Application Binary Inferface

AES: Advanced Encryption Standard

AI: Artificial Intelligence

API: Application Programming Interface

ARIMA: AutoRegressive Integrated Moving Average

AWS: Amazon Web Services

CDF: Cumulative Distribution Function

CDN: Content Delivery Network

CH-BL: Consistent Hashing with Bounded Loads

CH-RLU: Consistent Hashing with Random Load Update

CH: Consistent Hashing

CLI: Command Line Interface

CNI: Container Netowrk Interface

CNN: Convolutional Neural Network

CPU: Central Processing Unit

CRIU: Checkpoint/Restore In Userspace

CSV: Comma-Separated Value

DAG: Directed Acyclic Graph

DNN: Dense Neural Network

xviii

DPU: Data Processing Unit

ECDF: Empirical distribution function

EEDF: Earliest Effective Deadline First

FCFS: First-Come First-Serve

FFT: Fixed-Fourier Transform

FIFO: First-in-First-out

FPGA: Field-Programmable Gate Array

FaaS: Function as a Service

GC: Garbage Colection

GCP: Google Cloud Platform

GD: Greedy-Dual

GPU: Graphical Processing Unit

HPC: High-Performance Computing

HTTP: Hyper-Text Transport Protocol

HW: Hardware

IAT: Inter-arrival Time

IP: Internet Protocol

IPC: Instructions per Cycle / Inter-Processor Communication

JSF: Shortest Job First

JSON: JavaScript Object Notation

JSQ: Join-Shortest-Queue

JVM: Java Virtual Machine

LFU: Least Frequently Used

LL: Least Loaded

xix

LRU: Least Recently Used

LWL: Least-Work-Left

MIG: Multi-Instance GPU

ML: Machine Learning

MPI: Message-Passing Interface

MPS: NVIDIA Multi-Process Service

MQ: Multi-Queuing

MQFQ: Multi-Queue Fair Queuing

NVML: NVIDIA Management Library

OCI: Open Container Initiative

OS: Operating System

OW: OpenWhisk

QoS: Quality of Service

PTE: Page-Table Entry

RAM: Random Access Memory

RAPL: Running Average Power Limit

RNN: Recurrent Neural Network

RPC: Remote Procedural Call

SIMT: Single Instruction Multiple Threads

SJF: Shortest Job First

SLA: Service-Level Agreement

SW: Software

TCP: Transmission Control Protocol

TPU: Tensor Processing Unit

xx

TCB: Trusted Computing Base

TEE: Trusted Execution Environment

TTL: Time-to-Live

UVM: Unified Virtual Memory

VM: Virtual Machine

VT: Virtual Time

WASM: WebAssembly

xxi

1. Introduction

This thesis describes the current state of a new computing paradigm, serverless

computing, and proposes improvements to various aspects of the control planes that

orchestrate serverless computing systems. Serverless computing, otherwise known as

Function as a Service (FaaS) has the possibility to revolutionize cloud computing.

It emerged from out of the ethos of cloud computing where hardware is abstracted

and rented to customers. Serverless computing is the most recent and exemplary of

this abstraction, where the cloud provider totally manages users’ applications using a

FaaS control plane, orchestrating deployment, execution, scaling, resources, and more.

Major cloud providers such as Amazon Web Services [81], Google Cloud [83], Microsoft

Azure [48], and Alibaba Cloud [80], have taken up and popularized serverless since

first appeared in 2016.

Traditionally, an application would be hosted by the developer using hardware

that they personally owned and managed. This causes problems when trying to

rapidly scale up the number of users for the application – additional hardware must

be purchased (slowly), or the system must be over-provisioned to handle peak user

load. Cloud computing platforms can provision new “hardware”, in the form of a

virtual machine (VM) [52], in a matter of minutes. The developer then deploys their

application onto the VM and can connect it to the existing cluster of machines. When

1

user load decreases, say at night, these VMs can be deleted and do not have to be

paid for.

At the same time, software development practices were pushing to split up large

monolithic applications into functionality-specific microservices. Deploying microser-

vices onto individual VMs lead to wasted resources and high orchestration overhead.

Developers started to ship their applications inside pre-packaged containers [9], that

contained all necessary dependencies for it to run. Control planes like Kubernetes [10]

and OpenStack [30], along with many others, were also created that could deploy

these containers and manage the services within them using some simple configuration.

Cloud providers could then run these orchestration tools on their hardware, and deploy

user-provided containers directly.

This approach is highly popular today, but has several drawbacks and overheads.

Containers reduce, but do not wholly eliminate duplicate state, often consisting of

several hundred MBs of dependencies. Developers still need to be aware of when,

where, and how their application would run, now more convoluted because they

were responsible for putting this together themselves. Mitigating such problems and

reducing developer overhead required specialist “DevOps” positions to handle the

complexity of deploying software. Idle services can not be eliminated at the granularity

of container orchestration, so possible minutes of idle time between serving requests

must be paid for.

Serverless computing completes this transition by taking responsibility for all of

these concerns. Individual serverless functions are typically small, which are created

by developers by directly uploading source code to the provider. It is then responsible

for preparing the function’s dependencies, and executing it when a request with

2

arguments comes in. The user is only billed for resources used during this execution

time, a unique shift in billing costs. Several functions can be chained into a complex

application via a directed acyclic graph (DAG) description. The low-maintenance and

pay-per-use model has proven highly attractive to customers, and FaaS growth since

its inception in 2014 [81] has been dramatic.

Cloud providers are pushing users to this new platform because they get several

benefits from this style of computing. A function’s resources are considered ephemeral,

and can be removed at the provider’s discretion when not being used. The resource

demands of a function are much smaller than that of a VM or container, allowing many

hundreds to be hosted on a single server (also called a worker). Many invocations can

be run on a worker at a time, and the provider can load-balance these to maximize

utilization of their clusters that are plagued by wasted resources [40,110,111,248,273].

The transition to more fine-grained resource management allows for more advanced

optimizations and opportunities for improving resource utilization.

The value in serverless comes from its ability offer low-latency performance, which

requires a simple yet scalable control plane tailored with FaaS-specific distributed

computing optimizations. The primary components of such a control plane are

outlined in Figure 1.1, highlighting the contributions of this thesis. A worker executing

serverless functions can host dozens of concurrent executions and thousands of idle

functions to fully utilize resources (Chs. 3 & 6). The entire control plane coordinates

the execution of billions of invocations per day [206] and must scale to clusters of

thousands of machines, guaranteeing good performance under uncertain conditions

(Chs. 4 & 5). Active work on serverless spans from low-level virtualization and OS

abstractions to high-level scheduling and load-balancing (Ch. 4) algorithms. This

3

thesis discusses issues existing in current FaaS control planes and proposes methods,

new designs, and future-thinking systems to tackle them.

This thesis hinges on the fact that serverless systems draw on solutions and designs

from many fields of computing, but they must be adapted and modified to truly suit

this paradigm. Given the abstraction FaaS provides, one can ask several questions:

1) What techniques help individual invocations achieve minimum latency?, 2) How

must these change to keep global latency low as we scale to millions of invocations?,

and 3) How do orchestration decisions by the platform impact latency? It analyzes

the functions and workloads seen by serverless systems to accurately understand the

conditions we must support. The systems designs presented here are tested empirically

on real hardware, and bolstered by simulations matching the runtime characteristics

of live systems. The chapters herein show that all the layers and pieces comprising

serverless platforms are in fact opportunities for dramatically increasing performance

and resource utilization.

FaaS control planes themselves have been designed, re-design, and ported to a

variety of ecosystems to solve unique problems and constraints. FaaS has been placed

along the edge-to-cloud continuum [72,79,204,246], taking advantage of its scale-to-

zero capability. Moving serverless platforms beyond cloud computing to heterogeneous

hardware has been explored [94], which is key for integration of IoT [72, 188, 235, 246]

and FPGA [49,198] hardware. Meta created an internal FaaS platform [206] which

could be optimized using their knowledge of what workloads run on it. Another

unique entry, FuncX [66], creates a layer over supercomputing resources to run user

experiments in a FaaS-like manner. The most well-known platforms are the public

offerings of the major cloud providers, AWS Lambda [81], Google Functions [83], Azure

4

λ7

Invocation

FaaS Control Plane Ch. 4

Worker
Worker Worker

Controller

Ch. 3

Ch. 2 Ch. 5

λ1

λ2

λ3

λ7

λ4
λ1

λ5

GPU

λ6
λ1

Fig. 1.1: The major components of the control plane, and the areas of each this thesis
impacts. A controller accepts invocations for functions and distributes them
amongst a cluster of workers. These in turn run invocations in isolated
sandboxes

5

Functions [48], and Alibaba Function Compute [80]. Several open-source equivalents

have been made [17,21–23] which are popular in both research and as products for

end-users. Included in this thesis is a design for a jitter-free, low-latency control plane

and is highly configurable and able to run on heterogeneous and edge hardware.

More focused research into serverless has branched into nearly every field of systems

research. To serve a function invocation, the system must create an isolated sandbox

to execute the user code in. Numerous isolation mechanisms have been put forward,

containers [9, 31,77], language runtimes [47,218], and lightweight virtualization [33].

All of these take time to start, in what’s referred to as a cold starts and can significantly

increase invocation latency. Additional research has targeted this problem specifically

to accelerate existing isolation mechanisms creation time [12, 95, 175]. Future invo-

cations see lower latency by benefiting from locality, where the isolation sandbox is

re-used in a warm start invocation.

Knowingly keeping idle sandboxes resident in memory improves latency, but may

lead to resource underutilization. Sandbox sizes are chosen by users, who often over-

provision to negate performance problems [100,178,201,265,273]. Worker nodes also

cannot host a container per function, who often require several for ideal performance,

therefore remove them periodically to conserve space [113]. The highly heterogeneous

workload of FaaS has proven challenging when trying to predict when containers will be

needed, which would allow their removal from memory to conserve resources [210,277].

Adjusting the number of containers a function has reduces footprint, but may impact

latency as they cannot be shared [105,162]. Maintaining locality to provide acceptable

performance while maximizing use of resources is an open area of research and

addressed here.

6

The serverless abstraction allows for workers with various capabilities, not limiting

them to CPU-only computation. The major cloud providers currently do not expose

alternative compute, but latency-critical applications like machine learning (ML)

inference being moved onto FaaS platforms to take advantage its high scalability

can also benefit from heterogeneous hardware. Accelerators come in many flavors:

SmartNICs [78], GPUs [122, 187], FPGAs [49], and more [94, 202] – each with unique

characteristics and types of applications they can support. A host of applications have

moved to FaaS [38, 134, 199, 213, 260, 270] that can leverage faster hardware. FaaS

invocations are also unable to easily coordinate computation with each other [85, 86,

117,222,223,257,268], requiring slow intermediaries for interaction. These accelerators

also require locality to achieve usable performance, having significant and often longer

cold start times. A unique data locality for these devices exists too, as they must

have data on hand that may have been cached on a system with more available

memory. Running accelerated and massively parallel computation in FaaS that puts

not restrictions on applications is important for adoption and continued growth.

We cannot consider the challenges of serverless solely from a single-worker perspec-

tive, as by design it exists at a cluster level. Functions have a variety of characteristics:

execution time, inter-arrival-time of invocations, memory usage, and more. These

can all vary in orders of magnitude, from sub-second to several minute runtimes and

sub-second to daily invocation arrivals [210]. Even worse, functions are notoriously

bursty, rapidly changing how frequently invocations occur. One could schedule func-

tion sandboxes [17, 32, 51, 146] and have the controller micro-manage the cluster state.

Load balancing invocations [45,114,160] is a more scalable way to address the complex

load and large cluster uncertainty, trusting workers to make ideal decisions. The

7

cluster control plane targets locality in both cases, knowing that running invocations

in existing sandboxes is much more performant.

1.1 Thesis Outline

This thesis is ordered as follows. The following chapter, Chapter 2, provides

background on serverless computing, what technologies it builds on top of, and how

it is being used in both research and by users. Serverless evolved from, and is still

built on top of, abstractions in cloud computing like virtual machines (VMs) and

containers. These mechanisms are used to isolate functions from one another and

allow the control plane to control and protect resources. This control plane itself

consists of several components, a controller, workers, and ancillary services. Users

interact with the controller to create functions, invoke them, and receive results. It,

in turn, load balances invocations amongst the cluster of workers that execute them

using the aforementioned isolation tools. The many and varied designs presented by

researches are shown and compared here. Techniques to improve isolation mechanism

performance and load balancing are frequent. Wholly new systems have also been built,

typically targeting a specific workload class such as ML, which has become popular in

serverless. This exploration ends with a detailing of the many use cases serverless has

been put towards, including ML, scientific computing, and even distributed computing.

Chapter 3 has the first contribution of this thesis and describes a container cache

management design called FaasCache. Control planes keep idle function containers

resident in memory in the expectation that they will be used again in the future. These

warm executions are significantly faster than their counterparts that must wait for a

container to be spun up. Unfortunately, memory is neither a free nor infinite resource,

8

so control planes remove containers to both conserve and make room for others.

FaasCache optimizes worker memory usage by treating these containers as a cache,

and carefully considers what to evict when under resource constraint. Each worker

monitors function characteristics such as memory usage, frequency, and container

startup time. These are fed into a policy deciding which will be more valuable to keep

given the cost of having to re-create it and how soon that might be. It also monitors

the cache-hit ratio of invocations to dynamically resize the memory allocated to the

cache for targeting performance.

The next chapter, chapter 4, moves up a level in the control plane to present a

novel load-balancing algorithm. As FaasCache shows, functions benefit from running

in warm containers, which is referred to as function locality. The heterogeneous nature

of functions would imbalance workers if we sent each function’s invocations to a single

worker. Some would be overloaded and suffer significant performance degradation,

others sitting idle. Our CH-RLU algorithm targets locality for functions while at the

same time avoiding worker overload. We use consistent hashing [148] to give perfect

locality and distribute functions amongst workers. To detect overloads, we keep usage

reports from each worker and add anticipated load from dispatched invocations to such

reports. Extremely popular functions, those with the highest frequency of invocations,

also model Gaussian noise of the load impact before sending an invocation, to model

overloading scenarios. In all cases, if we predict a worker has too much work, we direct

invocations away from it in a fixed pattern, maintaining locality while minimizing

overloaded workers. The effectiveness of this at both minimizing platform overhead

and keeping load even across worker clusters is described at the end of the chapter.

Next, Chapter 5 details a new serverless control plane design called Ilúvatar. This

9

new control plane is written in Rust and seeks to solve the deficiencies in current

open-source control planes used for research [17]. Its worker is designed to be highly

modular, allowing swap-able implementations to support heterogeneous platforms and

ease comparisons for research. It supports a novel queue mechanism to support new

designs that may not run all workloads immediately, or handle cases of severe resource

demand. The controller is built on a stateless design and uses the load balancing

algorithm from Chapter 4, relying on the worker’s local knowledge for scheduling. The

third runtime component is a time-series database [28] used to aggregate function

and worker metrics, reducing communication overhead between platform components.

Finally, and a first for such systems, it has a built-in load generation suite that

integrates seamlessly with both worker and load balancer. With this, one tool can

test any level of the control plane under various load conditions, and record highly

detailed information for post-experimental analysis. We use this tool to compare with

other control plans and show the performance benefits of Ilúvatar.

The final piece of this thesis is Chapter 6, which uses Ilúvatar to multiplex GPU

resources to serve black-box functions. To prevent maintain control of GPU resources,

we insert a shim in between the function and GPU driver to intercept calls. This lets

us both over-subscribe memory and control when the memory is on-device or moved

to the host. We leverage the increase in memory control to allow many containers to

share one GPU, creating a warm-pool similar to that of regular CPU serverless. As

GPUs cannot support the same concurrency as many-cored CPUs, we use the queue

mechanism of Ilúvatar to dynamically control ordering and dispatching of invocations.

The queue monitors GPU utilization and sends invocation when compute is available,

moving memory around to ensure we don’t overload the device. Invocations also

10

benefit from locality here, successive runs and having their memory available gives

better execution performance. We balance these needs with fairness, using the queue

to prevent any function from starving others of device time. The effectiveness of all

these are demonstrated with thorough experimental analysis at the end of this chapter.

11

2. Background: Serverless computing and Function as a Service

Serverless computing builds on architectures and designs used throughout cloud

computing. These have been adapted and specialized in a myriad of ways by researchers

and companies to both improve performance and enable new features. This chapter

starts by describing in detail how serverless cloud control planes operate, and the

systems used to build them. Additionally, the plethora of FaaS research in areas

related to this thesis are examined and compared against.

2.1 What is Serverless Computing?

Serverless computing presents a departure from previous iterations of cloud com-

puting architectures. Users can run arbitrary applications without concern for how

or where it is ultimately run. FaaS control planes operate as a complex distributed

system, operating from the lowest levels of OS abstractions to the highest levels of

cloud system designs.

All such control planes work similarly and follow the generic architecture shown in

Figure 2.1. Users upload their source code 1 such as those in Figures 2.2 and 2.3 to

the cloud provider to create a function, and such functions can be chained together

inside the provider’s system to form a larger application. When the code is invoked

12

Virtual Machine

Virtual Machine

Virtual Machine

Controller

Load

Balancer

HTTP GET

Worker

Function

Worker

Function
Function

Function

 ③ Invocation
routed

to Worker

 ② Invocation enters
system at Controller

 ④ Invocation
executed
on Worker

Function

λ Code

 ① Code
uploaded to
Controller

Fig. 2.1: A common architecture for serverless control planes. A controller distributes
invocations to workers who run them inside containers.

13

1 # Initialization code
2 import numpy as np
3 import tensorflow as tf
4
5 m = download model("http://model_serve/img_classify.pb")
6 session = create tensorflow graph(m)
7
8 def lambda handler(event, context):
9 # This is called on every function invocation

10 picture = event["data"]
11 prediction output = run inference on image(picture)
12 return prediction output

Fig. 2.2: A classic serverless function: simple Python code performing ML inference
on image data. In this example library and model initialization are done
before execution starts.

(e.g. an HTTP request is made 2), the provider routes it to a worker 3 , creates a

sandbox for it and executes the function 4 , passing in any custom parameters. This

sandbox must provide isolation, both covering both resource and security, ensuring

that hogs or malicious actors do not interfere with co-located executions. Often,

this sandbox utilizes existing technologies such as Docker [9] or VMs. The major

cloud computing providers have all created offerings, Amazon Lambda [81], Google

Cloud Functions [83], Azure Functions [48], alternative providers such as IBM [17]

and Alibaba [80] have joined in, and even non-commercial open-sourced control planes

exist [21, 130].

FaaS functions are extremely diverse, encouraged by platforms who want to make

it easy to adapt code of any type. An extremely common example is Figure 2.3, a

microservice written in JavaScript that will operate as part of a larger application. The

other common language is Python, often used for ML inference functions like Figure 2.2.

Previously running applications like these would need VMs to host each piece, or

managing a complex orchestration tool such as Kubernetes [10]. The transition to

14

1 const doc = require("dynamodb-doc");
2 const dynamo = new doc.DynamoDB();
3
4 exports.handler = (event, context, callback) => {
5 const done = (err, res) => callback(null, {
6 statusCode: err ? "400" : "200",
7 body: err ? err.message : JSON.stringify(res),
8 headers: {
9 "Content-Type": "application/json",

10 },
11 });
12 switch (event.httpMethod) {
13 case "DELETE":
14 dynamo.deleteItem(JSON.parse(event.body), done);
15 break;
16 case "GET":
17 dynamo.scan({ TableName: event.queryParams.TableName }, done);
18 break;
19 case "POST":
20 dynamo.putItem(JSON.parse(event.body), done);
21 break;
22 case "PUT":
23 dynamo.updateItem(JSON.parse(event.body), done);
24 break;
25 default:
26 done(new Error("Unsupported method ‘${event.httpMethod}’"));
27 }};

Fig. 2.3: Functions have varied tasks and implementation languages. This JavaScript
function is designed to operate a microservice as part of a larger application.

15

FaaS also removes the need to manually scale how many instances of each service are

running as user demand grows and shrinks.

In a change from the billing model for rented VMs, users are billed only for the time

their code is executing, often in small millisecond-sized time slices. Most providers

set the cost to a formulation of the amount of memory used per time period [82],

roughly $1.66×10−5 per GB/second. Should the provider choose to keep that sandbox

resident in memory to use for a future invocation, the user will not be charged nor be

aware that it is happening, save for lower latency on future invocations.

2.1.1 Function Isolation

Each function is run inside an isolated sandbox environment such as a Docker

container [9], or a lightweight VM such as Firecracker [33]. By encapsulating function

state and any side effects, the virtual execution environment provides isolation among

multiple functions, and also allows for concurrent invocations of the same function.

Due to the overhead of starting a new virtual execution environment (i.e., container or

VM), and initializing the function by importing libraries and other data dependencies,

function execution thus incurs a significant “cold start” penalty. Table 2.1 shows the

breakdown of initialization time (last column) vs. the total running time of different

FaaS applications, and we can see that the initialization overhead can be as much

as 80% of the total running time. Thus, FaaS can result in significant performance

(i.e., total function execution latency) overheads compared to conventional models of

execution where applications can maintain application state between handling user

requests and do not face the high initialization and cold start overheads.

16

Tab. 2.1: FaaS workloads are highly diverse in their resource requirements and running
times. The initialization time can be significant and is the cause of the cold
start overheads, and depends on the size of code and data dependencies.

Application Memory size Run time Initialization time
ML Inference (CNN) 512 MB 6.5 s 4.5 s
Video Encoding 500 MB 56 s 3 s
Matrix Multiply 256 MB 2.5 s 2.2 s
Disk-bench (dd) 256 MB 2.2 s 1.8 s
Web-serving 64 MB 2.4 s 2 s
Floating Point 128 MB 2 s 1.7 s

2.2 Virtualization for FaaS

2.2.1 Virtual Machines

To both prevent takeover of the physical hardware and ensure isolation between

different users, cloud providers typically offer virtualized infrastructure [52]. Mimicking

the stack in Figure 2.4a, user applications run inside a virtual machine and cannot

directly access the hardware. A hypervisor manages a set of virtual machines that have

a private OS inside them. Using hardware virtualization techniques, the provider’s

hypervisor interposes itself between guest and hardware, maintaining total control.

Memory is protected via virtual memory in the CPU, protected instructions are

trapped to the hypervisor, and network and disk I/O interaction can be run through

the hypervisor. A major drawback is that users must install (duplicate) copies of OS’s,

libraries, and applications into each VM, and are responsible for maintenance of the

guest OS.

17

(a) Virtual Machines (b) Containers

Fig. 2.4: Different layers of abstraction between hardware and kernel based virtualiza-
tion.

2.2.2 VM Resource Management

A number of works have sought to reduce the overhead from virtualization by

techniques such as securely exposing hardware to guests [92] or reducing layers of

indirection [55]. A number of optimizations to memory usage that reduce the footprint

of VMs were outlined by [242], which are still used in production hypervisors today.

Choosing where to place VMs, knowing that they may run for days or months, is

critical to reduce fragmentation on hosts across provider datacenters. Bin-packing

studies have sought to minimize fragmentation [84] by overcommitting resources even

at the risk of violating capacity. Even today, after much research in the area, providers

see 20%-40% of unallocated resources [111] that they seek ways to make use of.

2.2.3 Containers

Enabling both improved process-level protections and a viable alternative to

hardware virtualization, a new method of isolation was devised. Kernel virtualization,

18

built originally around Linux cgroups, provides similar isolation and security guarantees

to VMs. A combination of kernel utilities enables limiting CPU, memory, and I/O

usages, restricting views of the file system, blocking interaction with other processes,

and more. Popularized by various projects [9, 193], such containers reimagined how

cloud computing and applications could work. Multiple applications could share the

same operating system, and even libraries, safe from all interference from one another.

Developers could ship applications, complete with any dependencies, that ran securely,

anytime, and anywhere. Providers have begun offering services around these, tools

like Kubernetes [10] orchestrate placement of containers onto hosts, removing the need

for users to rent VMs at all.

2.3 Serverless Control Plane Research

2.3.1 Workload Characterization

Published traces from major providers give a glimpse into the scale of serverless

computing. Shahrad et al. [211] publicized the first dataset of the functions served by

Azure Functions, with a detailed characterization breakdown. As seen in Figure 2.5,

invocation rates are extremely heavy tailed. The most frequently invoked functions

are executed several times a second, while the rarest perhaps once per day. Because of

this, a small portion, 19% of functions, account for 99.6% of invocations in Azure. A

paper describing an internal FaaS platform at Meta [206], showcased handling trillions

of invocations daily and a similar skewed workload.

Several examples of functions are shown in Table 2.2, these are taken from Func-

tionBench [15]. Functions have high variation in warm and cold start times, with

19

Fig. 2.5: A CDF of daily invocations for functions. Invocation frequencies taken from
an Azure dataset range from sub-second to less than one per day. Figure
from [211]

cold start times being significantly higher. Memory usage can range from a few dozen

megabytes, to half a gigabyte, matching real-world data from [211]. Control planes

must be able to handle these high variations in frequency and resource usage, and

treat all functions fairly.

2.3.2 Cold Start Mitigation

Many techniques have been proposed to reduce the initialization overhead from

cold starts. They fall into two general categories, the first try to prevent cold starts

by smart container management, and the latter reduce the time of a cold start.

2.3.2.1 Keep-Alive Locality for FaaS resource management has been explored in

the form of function keep-alive policies. Once a container for a function is created

and the function finishes execution, the container can be kept resident in-memory

20

Tab. 2.2: FaaS workloads are highly diverse in their resource requirements and execu-
tion times. The initialization time can be significant and is the cause of the
cold start overheads, and depends on the size of code and data dependencies.

Application Memory size Warm time (sec.) Cold start time (sec.)
Web-serving 64 MB 0.179 1.153
ML Inference (CNN) 512 MB 2.211 7.833
Disk-bench (dd) 256 MB 1.068 2.944
Floating Point 128 MB 0.083 1.432
Image Manipulation 300 MB 4.806 5.268
Matrix Multiply 256 MB 0.117 1.067
AES Encryption 128 MB 0.587 2.064
Video Encoding 500 MB 10.28 11.51
JSON Parsing 256 MB 0.414 1.962

instead of immediately terminating it. Subsequent invocations of the function can

then reuse the already running container. However, keep-alive is not a panacea for all

FaaS latency problems. Specifically, idle containers being kept alive in anticipation of

future function invocations can reduce the efficiency of the servers by intentionally

not using resources.

Designing general keep-alive policies is challenging due to the extreme heterogeneity

in the different function popularities, resource requirements, and cold start overheads.

Commonly, platforms use a default, fixed, time-to-live (TTL) to wait before deleting

idle containers [17]. Predicting when future invocations will occur has been tried [211].

The platform can use this prediction to keep idle containers or remove them expecting

it won’t be needed for some time and re-create ahead of time when anticipated. FaaS

users have even taken it upon themselves to keep their containers alive in various

ways [3, 12] to avoid cold starts.

2.3.2.2 Reusing Initialization Performing multiple container startups of a func-

tion will involve executing the same startup procedures repeatedly: language runtimes,

21

the OS of a micro-VM, etc. Utilizing past startups by checkpointing the container at

a known position and booting from there has proved promising in reducing cold start

times [95,238]. Memoization approaches that leverage existing containers to duplicate

their state have proven highly effective [95, 250].

2.3.2.3 Alternate Isolation Mechanisms While a simple implementation would

run functions inside Docker containers [9], so long as isolation guarantees are upheld,

using alternate mechanisms with faster start times is effective. Directly optimizing

the isolation mechanism [33] or common libraries and language runtimes used by FaaS

workloads [64] both give immediate performance boosts. Running functions inside the

worker’s language runtime can dramatically reduce initialization times [95,139,218,238].

Security may be relaxed between functions in a larger application [35, 97] allowing for

the reuse of sandboxes.

2.3.2.4 Worker Resource Management Worker resources are not infinite,

especially memory for keeping function sandboxes available. Packing functions together

can improve memory utilization [34]. Developers often over-assign memory, causing

under-utilization, the control plane is in the perfect place to minimize this waste [100,

178]. Concurrent invocations of the same function has been reused to share resources,

as isolation may be relaxed [224].

The initialization overheads of serverless functions and their repeated invocations

have spawned a great deal of research into optimizing their resource management.

Recent surveys [103, 128, 163, 169, 197] provide an overview of the challenges and

solutions in this very active research area.

22

2.3.3 Load Balancing

Serverless control planes are a distributed system, assigning invocations to worker

nodes. The load-balancing of invocations can significantly affect latency, from either

overloading workers or causing excessive cold starts. Several works have used locality

as the primary way of ensuring invocation warm-starts, trying to direct a function to

the same worker(s) [46, 160]. FaaS load-balancing may be seen as akin to VM bin-

packing, and some have used reinforcement learning to choose sandbox placement [51].

Predicting a window of function’s invocation arrivals and preparing a container for

it [210] works for relatively uncommon functions. Scheduling functions based on

their larger application DAG can minimize startup and communication time [32, 124,

157,168,216,217,280]. Functions may compete for certain resources like network, so

scheduling them on different machines can speed up certain workloads [233].

Package-aware load balancing [46] identifies and uses function code dependencies

(software packages) as an important source of data locality. While this is an important

factor, we focus on the in-memory locality of kept-alive functions since memory

capacity is much smaller than permanent storage and caching functions in memory

has a very large performance impact. CPU contention and interference is a major

source of performance bottlenecks for co-located functions, and adjusting CPU-shares

using cgroups can provide significant benefits [227, 229, 230]. The repetitive nature of

functions and their workflows can also be used to improve resource utilization and

latency [88,135,194,264] to select workers and sandboxes before they are needed.

The tradeoff between locality and performance has also been explored in the

context of delay scheduling [269] for data-parallel applications such as MapReduce.

23

Load-balancing is seen as a “dispatch” problem in queuing theory, and the FaaS

cluster system most closely approximates G/G/PS, since the arrivals and service times

are not Markovian. Techniques such as “join the shortest queue”, and “least work

left” [125] have been shown to be effective. The online-greedy policy evaluated in

the previous section closely approximates least-work-left. However, it is difficult to

implement in practice since the running times of functions is hard to predict due to

their volatile arrival distribution mixtures and high variances in running time due to

various system interference effects.

2.3.4 Heterogeneous Hardware

Numerous control plane designs have been proposed targeting various accelerators

such as SmartNICs, GPUs, DPUs, and FPGAs [78,89,94,187]. One load balancing

design sought to lower latency by mixing in low- and high-end servers for executing

functions [203], using cheap and plentiful memory to host many sandboxes with a few

fast machines to speed up popular functions.

2.3.5 Serverless Data-plane

A lot of work has gone into improving the performance hit caused by serverless

functions needing to repeatedly download data and state from remote storage. Com-

monly used data can be cached on worker nodes for faster function access [178,201].

Fault-tolerant storage systems targeting serverless systems can accelerate shared

worker between invocations [117,222]. Co-locating different functions that access the

same data to identical machines can improve data locality [32].

24

2.4 Application Mitigations of Control Plane Deficiencies

Researchers have often found the offerings by cloud providers to be lacking, but

naturally do not want to host their own serverless control plane. To compensate

for this, many have developed workarounds for issues such as poor performance and

missing features. Even cloud providers face bottlenecks when rapidly scaling a function

to several thousand workers, hence [54] allocates very large sandboxes and manually

run multiple functions inside them. To overcome the lack of communication, [85]

creates a secondary VM to punch TCP/IP holes that enables an MPI-like interface

for custom Python functions.

2.5 Serverless Applications

A variety of applications have been built on serverless computing, in all manner of

industries, use cases, and scales.

FaaS can be used to distribute embarrassingly parallel tasks such as MapRe-

duce [142] or a make task [108]. A common use case is parallel encoding of videos

using hundreds of workers [42, 270] or performing analytics on live video [199, 202].

On-demand scaling and usage has made FaaS attractive as a place to run streaming

applications [104,156,249] and real time [41,259] tasks.

The event-driven nature of serverless execution has garnered a lot of excitement

from the IoT community [57, 132, 188, 235]. Edge computing pairs nicely with the

ephemeral and on-demand execution model of serverless and has seen significant

work [72,79,246]. Industrial applications, especially for monitoring and control have

25

proven popular [136,172,271]. Even running interactive multiplayer video games on

top of serverless computing has been explored [93].

Complex distributed applications are often a poor fit to be split into functions and

linked into a serverless application. One attempt by [86] recreates Apache Zookeeper

as a test-case for distributed serverless systems. It suffers scalability issues due to

high communication overheads between invocations over external storage.

2.5.1 ML in Serverless

Machine learning in all its forms has made its way into serverless research. Com-

monly to make scheduling decisions for containers [51] or resource allocation to

them [100,178]. Others have built control planes or systems dedicated to inference,

targeting the performance bottlenecks in FaaS [38,260]. And finally there are works

that do training, taking advantage of the serverless scaling [118,245,257].

2.5.2 Scientific Serverless Computing

A group has made a serverless control plane that can connect with university

supercomputing resources to run scientific workloads [66]. FaaS scalability has been

used to accelerate biomedical research [134, 158]. Others have performed common

linear algebra computations [213,252] and optimization algorithms [47] on FaaS.

26

3. Keeping Serverless Computing Alive with Greedy-Dual Caching

Keeping every created function container indefinitely is not feasible for serverless

control planes. They can be invoked sparsely – perhaps a handful of times per day.

When a container isn’t handling an invocation, it sits idle, occupying memory the

control plane may want to use for other, more active, purposes. How long to keep

a function sandbox in memory is called a keep-alive decision, and has a dramatic

effect on latency. Keep-alive policies must keep functions alive based on their resource

and usage characteristics, which is challenging due to the diversity found in FaaS

workloads.

The insight of this chapter is that keep-alive is analogous to caching. Our caching-

inspired Greedy-Dual keep-alive policy can be effective in reducing the cold start

overhead by more than 3× compared to previous approaches. Caching concepts such

as reuse distances and hit-ratio curves can also be used for auto-scaled server resource

provisioning, which can reduce the resource requirement of FaaS providers by 30% for

real-world dynamic workloads. We implement caching-based keep-alive and resource

provisioning policies in our FaasCache system, which is based on OpenWhisk.

27

3.1 Caching Background

Our answer to solving the twin conundrum of keep-alive and provisioning that is

robust to workload heterogeneity and dynamism, is to use concepts from a related,

well-known field with the same challenges. Caching has a long history of robust

eviction algorithms that use temporal locality such as LRU (Least Recently Used).

The effectiveness of a caching algorithm depends on the workload’s inter arrival time

distribution, the relative popularities of different objects, and thus many variants

of LRU such as LRU-k [185], segmented LRU [73], ARC [171], and frequency based

eviction such as LFU [99], are widely used in caching systems. Because functions

show a lot of diversity in their memory footprints, and since keep-alive is primarily

constrained by server memory, we seek to use size-aware caching methods. While

conventional caching algorithms and analytical models largely deal with constant-sized

objects, many size-aware caching policies have been developed for webpages and

data [62]. In particular, we use the Greedy-Dual [262] online caching framework that

deals with objects with different eviction costs that are determined based on size

and other factors. The Greedy-Dual family of eviction algorithms for non-identical

objects can be extended in many ways. We use a common variant, Greedy-Dual-Size-

Frequency [74–76], which considers the size and frequency of objects.

Caching has a rich collection of analytical and modeling techniques to determine

the efficacy of caches for different workloads. Hit (or miss) ratio curves are widely used

for cache sizing to achieve a target performance, and for understanding and modeling

cache performance. Hit-ratio curves can be constructed both in an offline and online

manner, using techniques involving reuse distances [275], eviction times [133], Che’s

28

approximation [68], footprint descriptors [226], and estimation techniques such as

SHARDS [243], counterstacks [254], etc.

3.2 Keep-alive Tradeoffs

In this section, we first present an empirical analysis of cold start overheads of

common serverless applications, followed by the tradeoffs in keep-alive policies.

System model. We assume that each function invocation runs in its own container.

A FaaS control plane may use a cluster of physical servers and forward the function

invocation requests to different servers based on some load-balancing policy. Our aim

is to investigate general techniques that are independent of cluster-level load-balancing,

and we therefore focus on server-level policies. Even on a single server, a function can

have multiple independent and concurrent invocations, and hence containers. Each

function has its own container disk-image and initialization code, and thus containers

cannot be used by different functions. A function’s containers are nearly identical in

their initialization overheads and resource utilization since they are typically running

the same function code. When a function finishes execution, its container may be

terminated, or be kept alive and “warm” for any future invocations of the same

function. At any instant of time, each container is either running a function, or is

being kept alive/warm. Thus, server resources are consumed by running containers,

and containers being kept alive in anticipation for future invocations.

Keeping functions alive/warm presents a fundamental tradeoff: it can reduce

application latency and CPU and I/O overhead, but it increases memory pressure.

Nevertheless, recycling the execution environment and keeping function containers

29

alive is a useful performance optimization that is supported by large public cloud

platforms [13, 14, 19]. In some scenarios, server resources may also be shared with

long-running containers and VMs. In such cases, function keep-alive also influences

the performance of other co-located applications and services, and the overall cloud

efficiency. Therefore, understanding and optimizing this tradeoff is important, and we

develop caching-based dynamic resource provisioning policies in Section 3.4. Our goal

is to allow FaaS operators to understand the benefits of different levels of aggressive

keep-alive policies.

Cold start overheads in OpenWhisk. In order to understand the performance

and latency implications of function cold starts, we investigate the chain of events

necessary to run function code in a popular FaaS control plane, OpenWhisk [17]. A

timeline of a function invocation request for a TensorFlow machine learning inference

task is shown in Figure 3.1. The figure shows the major sources of cold start overhead:

from request arrival to the actual function execution. OpenWhisk first checks whether

the function can be served from the pool of warmed containers it maintains, and if no

container is found, a Docker container is launched, and the runtime for the function

is initialized: which comprises of OpenWhisk and Python runtime initialization, as

well as any specific explicit function initialization provided by the application. The

total compulsory overhead, from the request arrival to the actual function execution,

is significant: up to 2.5 seconds are spent loading all runtime dependencies, before the

user-provided initialization and actual event handling code can begin execution.

Function Initialization. Function initialization refers to function-specific code for

downloading and resolving code and data dependencies, which can be run before

actual function execution (explicit-init component in Figure 3.1). For example, this

30

Akka, Docker

startup

0.45s 1.5s 0.76s

Explicit init Function Execution

Container Pool Check

8 seconds

1.9s 4.3s

OW runtime init

Fig. 3.1: Timeline of function execution and sources of cold start delay in OpenWhisk
for an ML inference application.

can be used for downloading data dependencies ahead of time such as large neural

network models for inference, or for runtime initialization such as downloading and

importing package dependencies (e.g., Python packages). An example of function

initialization is shown in Figure 2.2, which shows a pseudo-code snippet of a function

that performs machine learning inference on its input. For ML inference, the function

downloads an ML model and initializes the TensorFlow ML framework (lines 5 and 6).

If the function’s container is kept alive, then invocations of the function do not need

to run the expensive initialization code (lines 2–6).

Workload Diversity and Dynamism. Designing keep-alive policies is not trivial

due to the highly diverse and expanding range of applications that are using FaaS

control planes. Conventionally, FaaS has been used for hosting web services, which

is attractive because of the pay-per-use properties. Event handling functions for

web responses typically have a small memory footprint but require low execution

latency. Increasingly, FaaS is also being used for “heavy” workloads with high memory

footprint and large initialization overheads such as highly parallel numerical computing

(such as matrix operations [142], scientific computing [212], and machine learning [35].

The diversity of FaaS applications also results in a wide range of function memory

footprints, running times, and initialization times, as seen in Table 3.2. Keep-alive

policies must therefore balance the resource footprint of the containers with the

31

benefits of keeping containers alive—and do so in manner that is applicable across a

wide range of applications.

Furthermore, FaaS workloads show a high degree of dynamism and temporal

effects. The Azure function [211] trace shows sharp diurnal effects: the function arrival

rate is about 2× higher during the peak periods compared to the average. Function

workloads are also heavy-tailed: a few “heavy hitting” functions are invoked much

more frequently than others or consume a larger amount of computing resources, often

by 2 or 3 orders of magnitude.

3.2.1 Policy Goals and Considerations

The primary goal of keep-alive is to reduce the initialization and cold start latency,

by keeping functions alive for different durations based on their characteristics. Because

servers run hundreds of short lived functions concurrently, keep-alive policies must

be generalizable and yield high server utilization. Functions can have vastly different

characteristics, and keep-alive polices must work efficiently in highly dynamic and

diverse settings. We use the following characteristics of functions for keep-alive policies.

The initialization time of functions can vary based on the code and data

dependencies of the function. For example, a function for machine learning inference

may be initialized by importing large ML libraries (such as TensorFlow, etc.), and

fetching the ML model, which can be hundreds of megabytes in size and take several

seconds to download. Functions also differ in terms of their total running time,

which includes the initialization time and the actual execution time. Again, functions

for deep-learning inference can take several seconds, whereas functions for HTTP

servers and microservices are extremely short lived (few milliseconds). The resource

32

footprint comprises of the CPU, memory, and I/O use, and also differs widely based

on the application’s requirements. Finally, functions have different frequencies and

invocation rates. Some functions may be invoked several times a second, whereas

other functions may only be invoked rarely (if they are used to serve a very low-traffic

web-site, for instance).

Because server resources are finite, it is important to prioritize functions which

should be kept alive, based on their initialization time, total running time,

resource footprint, and frequencies. A function which is not popular and is

unlikely to be called again in the near future, sees little benefits from keep-alive, and

wastes server memory. Similarly, the resource consumption of the functions is also

important: since keeping large-footprint functions alive is more expensive than smaller

functions, smaller functions should be preferred and kept alive for longer. Finally,

functions can also be prioritized based on their initialization overhead, since it is

effectively wasted computation.

The problem of designing keep-alive policies is complicated by the fact that func-

tions may have vastly different keep-alive priorities across the different characteristics.

Consider a function with a large memory footprint (like those used in ML inference),

high initialization overhead, and a low popularity. Such a function should have a low

keep-alive priority due to its size, high priority due to large initialization overhead,

and a low priority due to its low popularity. Thus, keep-alive policies must carefully

balance all the different function characteristics and prioritize them in a coherent

manner.

Current FaaS systems have shirked this challenge and use primitive keep-alive

policies that are not designed with the diversity and dynamism in mind. FaaS

33

frameworks such as OpenWhisk, keep all functions alive for a constant period of time

(10 minutes). This is agnostic to different function characteristics such as resource

footprint and initialization overheads, and only loosely captures popularity. More

principled approaches are needed, which we provide next.

3.3 Caching-based Keep-Alive Policies

Formulating a keep-alive policy that balances priorities based on its competing

characteristics (memory footprint, frequency, initialization time, and execution time)

of functions seems daunting.

Keeping a function alive reduces its effective execution (or response) latency, in the

same way as caching an object reduces its access latency. When all server resources

are fully utilized, the problem of which functions not to keep alive is equivalent to

which objects to evict from the cache. The high-level goal in caching is to improve

the distribution of object access times, which is analogous to our goal of reducing the

effective function latencies.

This caching analogy provides us a framework and tools for understanding the

tradeoffs in keep-alive policies, and improving server utilization. Caching has been

studied a in wide range of contexts and many existing caching techniques can be

applied and used for function keep-alive. Our insight is that we can use classic

observations and results in object caching to formulate equivalent keep-alive policies

that can provide us with well-proven and sophisticated starting point for understanding

and improving function keep-alive.

In the rest of this section, we will show how cache eviction algorithms can be

34

adapted to keep-alive policies. Caching systems typically seek to improve hit ratios

(the fraction of accesses that are cache hits). However, focusing on hit-rates alone does

not necessarily translate to improved system level performance if the objects have

different sizes and miss costs. For instance, caching all small objects may yield a high

hit ratio, but the infrequent misses of larger objects results in higher miss costs and

poor system throughput. Therefore, we will also focus on minimizing the overall cold

start overhead, which is equivalent to the “byte hit ratio” used in caching systems.

3.3.1 Greedy-Dual Keep-Alive Policy

While many caching techniques can be applied to the function keep-alive policies,

we now present one such caching-inspired policy that is simple and yet captures all

function characteristics and their tradeoffs. Our GDSF policy is based on Greedy-

Dual-Size-Frequency object caching [74], which was designed for caches with objects of

different sizes, such as web-proxies and caches. Classical caching policies such as LRU

or LFU do not consider object sizes, and thus cannot be completely mapped to the keep-

alive problem where the resource footprint of functions is an important characteristic.

As we shall show, the Greedy-Dual approach provides a general framework to design

and implement keep-alive policies that are cognizant of the frequency and recency of

invocations of different functions, their initialization overheads, and sizes (resource

footprints).

Fundamentally, our keep-alive policy is a function termination policy, just like

caching focuses on eviction policies. Our policy is resource conserving: we keep the

functions warm whenever possible, as long as there are available server resources.

This is a departure from current constant time-to-live policies implemented in FaaS

35

frameworks and public clouds, that are not resource conserving, and may terminate

functions even if resources are available to keep them alive for longer.

Our policy decides which container to terminate if a new container is to be launched

and there are insufficient resources available. The total number of containers (warm +

running) is constrained by the total server physical resources (CPU and memory). We

compute a “priority” for each container based on the cold start overhead and resource

footprint, and terminate the container with the lowest priority.

Priority Calculation. The GDSF keep-alive policy is based on Greedy-Dual

caching [262], where objects may have different eviction costs. For each container, we

assign a keep-alive priority, which is computed based on the frequency of function

invocation, its running time, and its size:

Priority = Clock +
Freq× Cost

Size
(3.1)

On every function invocation, if a warm container for the function is available, it is

used, and its frequency and priority are updated. Reusing a warm container is thus a

“cache hit”, since we do not incur the initialization overhead. When a new container is

launched due to insufficient resources, some other containers are terminated based on

their priority order—lower priority containers are terminated first. We now explain

the intuition behind each parameter in the priority calculation:

Clock is used to capture the recency of execution. We maintain a “logical clock” per

server that is updated on every eviction. Each time a container is used, the server

clock is assigned to the container and the priority is updated. Thus, containers that

are not recently used will have smaller clock values (and hence priorities), and will be

36

terminated before more recently used containers.

Containers are terminated only if there are insufficient resources to launch a new

container and if existing warm containers cannot be used. Specifically, if a container

j is terminated (because it has the lowest priority), then Clock = Priorityj. All

subsequent uses of other, non-terminated containers then use this clock value for their

priority calculation. In some cases, multiple containers may need to be terminated to

make room for new containers. If E is the set of these terminated containers, then

Clock = maxj∈E Priority(j)

We note that the priority computation is on a per-container basis, and containers

of the same function share some of the attributes (such as size, frequency, and cost).

However, the clock attribute is updated for each container individually. This allows

us to evict the oldest and least recently used container for a given function, in order

to break ties.

Frequency is the number of times a given function is invoked. A given function

can be executed by multiple containers, and frequency denotes the total number of

function invocations across all of its containers. The frequency is set to zero when

all the containers of a function are terminated. The priority is proportional to the

frequency, and thus more frequently executed functions are kept alive for longer.

Cost represents the termination-cost, which is equal to the total initialization time.

This captures the benefit of keeping a container alive and the cost of a cold start. The

priority is thus proportional to the initialization overhead of the function.

Size is the resource footprint of the container. The priority is inversely proportional

to the size, and thus larger containers are terminated before smaller ones. In most

37

scenarios, the number of containers that can run is limited by the physical memory

availability, since CPUs can be multiplexed easily, and memory swapping can result

in severe performance degradation. Thus, for ease of exposition and practicality, we

consider only the container memory use as the size, instead of a multi-dimensional

vector.

We can also use multi-dimensional resource vectors to represent the size, in which

case we convert them to scalar representations by using the existing formulations from

multi-dimensional bin-packing. For instance, if the container size is d, then the size

can be represented by the magnitude of the vector ||d||. Other size representations

can also be used. A common technique is to normalize the container size by the

physical server’s total resources (a), and then compute the size as
∑

j

dj
aj

where dj, aj

are the container size and total resources of a given type (either CPU, memory, I/O)

respectively. Cosine similarity between d and a can also be used, as is widely used in

multi-dimensional bin-packing.

FaaS-specific considerations. The application of cache eviction algorithms to

FaaS keep-alive is fairly straight-forward. The various inputs Greedy-Dual (memory

size, cold start time, frequency) are available once a function has finished execution,

and thus the keep-alive policy is completely online. Our policy calculates eviction

priorities at the function level, but evicts at the container level. Recall that a particular

function may have multiple containers associated with concurrent function invocations.

We assume that all containers of a function are identical, i.e., they have the same

initialization cost, footprint, etc. Thus, any one of the identical containers can be

evicted.

38

3.3.2 Other Caching-Based Policies

The Greedy-Dual approach also permits many specialized and simpler policies. For

instance, allowing for different parameters in Equation 3.1 results in different caching

algorithms. If only the access clock is used as a priority, and other parameters are

ignored, then we get LRU, with its ease of analysis and generality which has been

well established with over half a century of empirical and analytical work. Using only

frequency yields LFU. Similarly, a size aware keep-alive policy can be obtained by

using 1/size as the priority, which would be useful in scenarios where memory size is

at a premium.

Other size-aware online algorithms with tight online theoretical guarantees can

also be applied. We also implement the LANDLORD [263] algorithm, which can

be understood as a variant of the Greedy-Dual approach. Landlord also considers

the frequency, size, and initialization cost of functions. When the server is full and

some container is to be evicted, a “rent” is charged from each function based on its

size and initialization cost (specifically, it is equal to min(initialization cost
size

). This subtly

differs from Greedy-Dual-Size-Frequency: the decrease in priority is computed based

on the state of all the cached containers, and not independently applied. Upon a

function invocation, its containers get a “credit”, and their priority is set to their

initialization cost. The containers with the lowest credits are evicted. Landlord has

appealing and well-proven properties of its online performance: its competitive ratio

(the performance compared to an optimal offline algorithm that knows future requests)

has been well analyzed [263].

39

3.4 Server Provisioning Policies

Resource provisioning, i.e., determining the size and capacity of the servers for

handling FaaS workloads, is a fundamental problem in serverless computing. In this

section, we develop techniques that allocate the appropriate amount of resources to

servers based on the characteristics of the function workloads. Resource provisioning

policies must consider the rate of function invocations, the resource footprints of the

functions, and the inter-arrival time between function invocations. To handle the

interplay and tradeoffs between these factors, we use similar principles for provisioning

that we used for developing our keep-alive policies. In case FaaS workloads are

co-located with other applications such as long-running containers and VMs, our

provisioning policies can also be used to determine the resource allocation of the

combined running and warm function pool.

The fundamental challenge underlying resource provisioning for FaaS workloads

is the performance vs. resource allocation tradeoff. Running a workload on large

servers/VMs provides more resources for the keep-alive cache, which reduces the cold

starts and improves the application performance. However, we must also be careful to

not overprovision, since it leads to wasted and underutilized resources. Additionally,

since function workload can be dynamic, resource provisioning must be elastic, and

be able to dynamically scale up or down based on the load. We therefore present a

static provisioning policy that determines the server memory size for a given function

workload, and then develop an elastic-scaling approach for handling workload temporal

dynamics.

40

3.4.1 Static Provisioning

In Section 3.1, we have seen how keeping function containers warm in a keep-alive

cache can help mitigate the cold start overheads. The effectiveness of any keep-alive

policy depends on the size of this keep-alive cache, and thus the server resources

available, i.e., the server size. Our static provisioning policy thus selects a server size

for handling a given workload. We want to optimize the resource provisioning to avoid

over and under provisioning, both of which are detrimental to cost and performance

respectively.

Having established that keep-alive policies are equivalent to cache eviction in the

previous section, we now extend the use of the caching analogy further, to develop a

caching-based provisioning approach. We claim that the performance vs. resource

availability tradeoff of serverless functions can be understood and modeled using cache

hit (or miss) ratio curves. Hit-ratio curves are widely used in cache provisioning and

modeling, since they give insights into cache performance at different sizes. Once

a hit-ratio curve is obtained, it is used to provision the cache size based on system

requirements. A common approach is to size the cache based on a target hit-ratio

(say, 90%). Alternatively, the slope of a hit-ratio curve can be understood to be the

marginal utility of the cache, and a cache size that maximizes this marginal utility is

picked. This entails choosing a cache size which corresponds to the inflection point of

the hit-ratio curve.

Hit-ratio Curve Construction. We use a function hit-ratio curve for determining

the percentage of warm-starts at different server memory sizes. The hit-ratio curve

is constructed by using the notion of re-use distances. A function’s reuse-distance is

41

defined as the total (memory) size of the unique functions invoked between successive

invocations of the same function. For example, in the request reuse sequence of ABCBCA,

the reuse distance of function A is equal to size(B) + size(C). The distribution of

these reuse distances can yield important insights into the required cache size. If the

cache size is greater than the reuse distances, then there will be no cache misses. This

can be generalized to find the hit-ratio at cache size c:

Hit-ratio(c) =
c

∑

x=0

P (Reuse-distance = x), (3.2)

where the reuse distance probability is obtained by scanning the entire input function

workload for all reuse sequences. Conveniently, the hit-ratio is the CDF (cumulative

distribution function) of the reuse distances, which can be empirically determined based

on all the computed reuse distances. We show one such hit-ratio curve constructed

with reuse distances, for a representative sample of the Azure function workload in

Figure 3.2. We can see that the hit-ratio curve of functions also follows the classic

long-tailed behavior: the hit-ratio steeply increases with cache size up to an inflection

point, after which we see diminishing returns.

This technique and observation informs our provisioning policy. We construct a

hit-ratio curve based on reuse distances, and size the server’s memory based on the

inflection point. Alternatively, we can set a target hit ratio (say, 90%), and use that to

determine the minimum memory size of the server. Finding the reuse-distances for an

entire trace can be an expensive, one-time operation, and takes O(N ∗M) time where

N is the number of invocations and M is the number of unique functions. However,

sampling techniques such as SHARDS [243] can be applied to drastically reduce the

overhead, making this a practical and principled technique for resource provisioning.

42

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Cache Size (GB)

0.0

0.2

0.4

0.6

0.8

1.0
Hi

t R
at

io

Full Graph

Reuse Dist. GreedyDual

Fig. 3.2: Hit ratio curve using reuse distances show slight deviations from the observed
hit ratios due to dropped requests at lower sizes, and concurrent executions
at higher sizes.

Limitations of the Caching Analogy. The error in hit-ratios with the reuse-

distance approach in Figure 3.2 highlights an important facet where caching does not

fully map to FaaS. The main difference is due to the limitations on the concurrent

execution of functions: caching deals with unique objects, whereas there can be

multiple containers for a function. At lower cache sizes, a high miss rate results in

higher server load, and hence a higher number of dropped requests, that the classical

reuse-distance approaches do not capture. If all warmed containers of a function are

in use, then a new invocation results in a cold start—which would be counted as a

cache “hit”. Thus, at lower sizes, the real hit-ratio is lower than the ideal. At larger

sizes, multiple containers corresponding to concurrent invocations of a function will

be present, which results in a deviation from the hit-rate curve. Reconciling these

43

differences is an interesting area of future work. However, we note that hit-ratio curves

are only used for coarse-grained allocation, and small deviations result in slight under

or over provisioning. Moreover, our dynamic allocation policy described next can

reduce these errors using proportional control.

3.4.2 Elastic Dynamic Scaling

We also use the hit-ratio curve approach for a dynamic auto-scaling policy that

adjusts the server size based on workload requirements. We assume that the FaaS

server backend is running functions as containers either inside a virtual machine (VM),

or is sharing the physical server with other cloud applications. In either case, it is

important to be able to reclaim unused keep-alive cache resources and reduce its

footprint, in order to increase the efficiency of the cloud platform.

Our vertical elastic scaling policy is simple and is intended to demonstrate the effi-

cacy of a general caching-based approach. We implement a proportional controller [7]

which periodically adjusts the VM memory size based on the rate of cold starts. Thus,

during periods of low rate of function invocations (i.e., arrival rate), the cache size

can be reduced. This may increase the miss-ratio—but we care about the cold starts

(i.e., misses) per second, which is product of miss-ratio and invocations per second.

Our controller monitors the arrival and cold start rate, and uses the hit-ratio curve

to decrease or increase VM size dynamically. We use VM resource deflation [215] to

shrink or expand the VM by using a combination of hypervisor level page swapping,

or guest-OS memory hot-plug and unplug.

Assume that we have a target miss speed (number of cold starts/misses per

second). For instance, this target value can be a product of the desired hit-ratio, h,

44

and the average function arrival rate for the entire workload trace, λ̄. Periodically,

we monitor the exponentially smoothed arrival rate λ, and the observed miss speed.

Our proportional controller adjusts the cache size in order to reduce the difference

between the actual vs. target miss speed. This error is used to compute the new miss

rate, m, and the associated cache size c′ as follows:

HR(c′) = 1−m = 1− h
λ̄

λ
(3.3)

The new cache size c′ is then determined by inverting the hit-rate function HR. Our

vertical scaling controller is designed for coarse-grained VM size adjustments, and

only tracks the workload at time granularities of several minutes. Our intent with this

policy is to not be overly aggressive with the capacity changes, but only to capture

the coarse diurnal effects. Therefore, we use a large error deadband: the cache size

is only updated if the error is more than 30%. Finally, the memory scaling can also

be combined with cpu auto-scaling based on the function arrival rate, using classical

predictive and reactive auto-scaling techniques found in web-clusters [115].

Online adjustments. Our policies rely on the aggregate function characteristics,

which is used for constructing the hit-ratio curve. Once done, the traffic intensity

(invocations per second) can change. We primarily assume that the probability

distribution of function characteristics such as their frequency and size, does not

significantly change. However, our dynamic scaling policy can adjust to changes in

the traffic intensity (invocations per second). In other words, we assume that the

future traffic is going to be similar to the past, which is the basis of the timeseries-

forecasting based policies (such as in [211]), and is the fundamental principle underlying

45

ContainerPool

Greedy-Dual Keep-Alive

Provisioning Controller

OpenWhisk Invoker (VM)

Deflate

Incoming
Requests

Fig. 3.3: FaasCache system components. We build on OpenWhisk and augment it
with new keep-alive policies and a provisioning controller.

caching in general. Our provisioning policies are not completely online, since they

have a preparation phase for constructing the hit-rate curves. A “drift” in function

characteristics is fixed by periodically updating the hit-ratio curve, which we currently

do once per week. Online hit-ratio curves can also be constructed, and adapting

techniques such as [274] is part of our future work.

3.5 Implementation

We have implemented the keep-alive and the provisioning policies as part of our

FaasCache framework built on top of OpenWhisk (Figure 3.3).

Keep-Alive. FaasCache replaces the default OpenWhisk TTL-based keep-alive

policy with the Greedy-Dual-Size-Frequency approach. For each initialized container,

we assign and maintain the keep-alive prioritized ContainerPool, which is only a

100-line Scala modification. Each invocation of a function (OpenWhisk action) in

ContainerPool records the launch time and when results are returned.

If the container was prewarmed before the invocation arrived, we record it as the

function’s warm runtime. For new functions, the initialization overhead is captured

and assumed to be the worst-case runtime until a warmed invocation is recorded. In

46

the subsequent invocations, the initialization overhead is computed by subtracting the

cold from the warm time. The function’s frequency and clock value are updated with

each request. If the last container of a function is evicted, its cold and warm runtimes

are stored and used to compute priority for its future invocations. To preserve the

invocation fast-path, the ContainerPool is not kept sorted by priority. Instead, it is

sorted by priorities only during evictions, when the lowest priority container(s) are

terminated. We batch eviction operations to optimize the slow-path: we evict multiple

containers to reach a certain free resource threshold (1000 MB is the current default).

In the future, we intend to implement a similar design that is found in the Linux

kernel page eviction. A separate thread (analogous to kswapd) can be used to

periodically sort the containerpool list and asynchronously evict containers, so that

eviction is not on the critical path.

Provisioning. For the static provisioning, we compute the reuse distance distribution

for a given workload trace, and assume stationarity — that it will be applicable

on similar future workloads. We compute the reuse distances conventionally, by

examining all reuse-sequences. The dynamic provisioning controller runs periodically

(every 10 minutes), to deflate or inflate the VM size, if the cold start rate deviates

from the target significantly (by more than 30%). When the VM has to be shrunk, we

use cascade deflation [215]. We shrink the ContainerPool first, and reclaim the free

memory using guest OS-level memory hot-unplug and hypervisor-level page swapping.

Keep-alive Simulator. We have implemented a trace-driven discrete event simulator

for implementing and validating different keep-alive policies. Our simulator is written

in Python in about 2,000 lines of code, and implements the various variants described

in Section 3.3.2. It allows us to determine the cache hit ratios and the cold start

47

overheads for different workloads and memory sizes. Additionally, it also implements

the static and dynamic provisioning policies for adjusting server size.

3.6 Experimental Evaluation

We now present the experimental evaluation of our caching-based keep-alive

technique by using function workload traces and serverless benchmarks. Our goal is to

investigate the effectiveness of these techniques under different workload and system

conditions.

Setup, Workloads, and Metrics. For evaluating different keep-alive performance

with different workload types, we use different trace samples from the Azure Function

trace [211], which contains execution times, memory sizes, and invocation-timestamps

for more than 50,000 unique functions. Since our goal is to examine performance at a

server level, we use smaller samples of this trace for realistic server sizes, and replay

them in our discrete-event keep-alive simulator. This also allows us to examine the

behavior with different types of workloads, which is important because our keep-alive

policies are designed to be general and workload-agnostic. We use the following three

trace samples (more details in the Table 3.1):

RARE: A random sample of 1000 of the rarest, most infrequently invoked functions.

These functions will usually result in cold starts under a classic 10 minute TTL.

REPRESENTATIVE: A sample of 400 functions, sampled from each quartile of

the dataset based on frequency—yielding a more representative sample with higher

function diversity.

RANDOM: A random sample of 200 functions.

48

Tab. 3.1: Size and inter-arrival time (IAT) details for the Azure Function workloads
used in our evaluation.

Trace Num Invocations Reqs per sec Avg. IAT
Representative 1,348,162 190 /s 5.4 ms
Rare 202,121 30 /s 36 ms
Random 4,291,250 600 /s 1.8 ms

Functions from the FunctionBench [152] suite are used for generating a realistic

workload. A single server with 250 GB RAM and 48-core Intel Xeon Platinum 2.10

GHz CPUs is used for running all functions. The server is running modified OpenWhisk

(i.e., FaasCache), and Ubuntu 16.04.5.

Adapting the Azure Functions Trace. The format of the original Azure Function

trace [211] requires some additional pre-processing and extrapolation for generating a

workload. The full dataset consists of 14 days of function invocations, and billions of

individual invocations. We use the first day’s data, and do not consider functions that

are never reused (i.e., with less than two invocations).

The original trace provides memory consumption at the application level—with

the application made up of multiple functions. Therefore, we evenly split the memory

allocation between all functions in an application. The dataset provides invocations

in minute-wide buckets. When injecting/replaying the workload, if there is only one

invocation in a minute-bucket, it is injected at the beginning of the minute. For

multiple invocations, they are equally spaced throughout the minute.

The cold start overhead of each function is estimated as maximum - average runtime,

and the execution times provided in the dataset are used for this computation. The

dataset does not account for certain important sources of cold start overheads such

49

as execution environment creation (e.g., Docker). This unfortunately underestimates

the cold start overheads. However, because it applies uniformly to all functions, it

preserves the relative performance of the different keep-alive policies, and does not

affect the cache hit ratios.

We are interested in two metrics: the cold start ratio; and the average increase in

the execution time due to cold starts. The increase in execution time is computed by

averaging across all function invocations.

3.6.1 Trace-Driven Keep-Alive Evaluation

In this subsection, we use the Azure function traces to evaluate different keep-alive

policies in our discrete-event simulator. We compare all caching-based variants against

the default keep-alive policy in OpenWhisk (10 minute TTL). When the server is

full, this TTL policy evicts containers in an LRU order. We also evaluate different

Greedy-Dual variants: GD is our GDSF policy described in Section 3.3.1. The others

are the caching-based variants described in Section 3.3.2: LND is Landlord, and FREQ

is LFU.

We also compare against the histogram-based keep-alive policy in [211], which

is the state of the art technique. We have reproduced this policy (HIST) from the

details in the paper, and have implemented it in a “best-effort” manner without any

knowledge of the optimizations in the actual implementation. This is effectively a

“TTL+Prefetching” policy: it uses a histogram of inter-arrival times to predict future

function invocations and eagerly evict warm functions. It uses timeseries forecasting

to capture temporal locality, but does not consider the other function characteristics

such as function size and initialization cost. The IAT, computed by taking a function’s

50

execution time plus the subsequent idle time, between each actual invocation is

recorded in minute granularity buckets, tracking up to four hours between executions.

The policy uses ARIMA modeling for those invocations that fall outside this four hour

window, we chose not to implement this specific feature due to its complexity, and the

fact that it accounted for a minor fraction (˜0.56%) of all invocations. From these

buckets, a function’s coefficient of variation (CoV) is calculated using Welford’s online

algorithm [251]. When the function’s IAT is predictable (CoV ≤ 2), the function’s

historical/customized preload and TTL time are used. Otherwise, the function has

a generic TTL of two hours. When an invocation is anticipated, it is brought into

memory and kept there until its TTL expires. A function is evicted when the policy

predicts it will not have an invocation in the near future.

51

20 40 60 80
Memory (GB)

0.0

0.5

1.0

1.5

2.0

%
 In

cr
ea

se
 in

 E
xe

cu
tio

n
Ti

m
e

GD
TTL
LRU
HIST
SIZE
LND
FREQ

(a) Representative functions.

20 40 60 80
Memory (GB)

0

2

4

6

8

10

%
 In

cr
ea

se
 in

 E
xe

cu
tio

n
Ti

m
e

(b) Rare functions.

10 20 30 40 50
Memory (GB)

0.0

0.5

1.0

1.5

%
 In

cr
ea

se
 in

 E
xe

cu
tio

n
Ti

m
e

(c) Random sampling.

Fig. 3.4: Increase in execution time due to cold starts for different workloads derived
from the Azure function trace.

52

The increase in execution time for different traces and for different cache sizes is

shown in Figure 3.4. The increase in execution time is the cold start overheads averaged

across all invocations of every function, and captures the user-visible response-time.

For the representative trace (Figure 3.4a), Greedy-Dual reduces the cold start

overhead by more than 3× compared to TTL for a wide range of cache sizes (15–80

GB). Interestingly, it is able to achieve a low overhead of only 0.5% at a much smaller

cache size of 15GB, compared to other variants, which need 50 GB to achieve similar

results—a reduction of cache size by more than 3×. For rare functions (Figure 3.4b),

caching-based approaches such as LRU reduce the cold start overhead by 2× compared

to TTL for cache sizes of 40–50 GB. This shows that for rare functions, recency is a

more pertinent characteristic, and the complex four-way tradeoff used in Greedy-Dual

is not necessarily ideal in all workload scenarios. For this workload, the HIST policy

outperforms TTL, as reported in [211]. However, it results in 50% higher cold start

overhead compared to caching-based approaches. Furthermore, because HIST uses

only inter-arrival times, it is unable to perform well with heterogeneous representative

workloads (Figure 3.4a).

Finally, the randomly sampled trace has a large number of infrequent functions

because of the low probability of selecting the heavy-hitting functions. In Figure 3.4c,

the recency component again dominates, and we see LRU outperforming other variants.

The equivalence of LRU and TTL-based caching for rare objects has been noted [53,140],

which explains their similar behavior seen in Figure 3.4c.

Result: For representative, diverse workloads, our GD policy can improve the perfor-

mance and shrink cache sizes by up to 3×. For more homogeneous workloads, LRU

can outperform current TTL-based approaches by 2×.

53

We can observe from Figure 3.4 that the increase in execution time is generally

small (< 10%). This is because of two main factors: the evaluation metric chosen,

and the properties of the workload trace. The execution time is averaged across all

function invocations. However, serverless workloads consist of a large number of very

frequently invoked functions. The performance of these functions is generally not

affected by keep-alive policies, since any policy is going to keep them in the cache

because of their high frequency. Thus, the difference between non-work-conserving

policies such as TTL and Greedy-Dual is masked because of the frequent and popular

functions. For instance, the average inter-arrival time for all three workloads is less

than 36ms, or about 27 function invocations per second. Thus, the server is overloaded,

and TTL does well even though it is not work-conserving. As the IAT grows, the

effectiveness of work-conserving caching-based approaches increases compared to TTL,

as we shall see in the next subsection.

We see a similar relation and behavior in the miss-ratio curves shown in Figure 3.5.

Due to function heterogeneity, the cold start overheads are not strictly correlated with

cache miss ratios, and thus the differences between policies is different compared to

the previously described actual cold start overheads. Classic miss-ratio curves do not

consider the miss cost (i.e., initialization cost), which is an important metric that is

optimized by the Greedy-Dual approach. Thus, in general, even in object caching

contexts, miss-ratio curves deviate from the actual performance—a behavior that we

also observe.

54

20 40 60 80
Memory (GB)

0

10

20

30

40

50

%
 C

ol
d

St
ar

ts

GD
TTL
LRU
HIST
SIZE
LND
FREQ

(a) Representative functions.

20 40 60 80
Memory (GB)

0

10

20

30

40

%
 C

ol
d

St
ar

ts

(b) Rare functions.

10 20 30 40 50
Memory (GB)

0

5

10

15

%
 C

ol
d

St
ar

ts

(c) Random sampling.

Fig. 3.5: Fraction of cold starts is lower with caching-based keep-alive.

55

Skewed Freq Cyclic Skewed Size
Workload Type

0

10000

20000

of

 In
vo

ca
tio

ns

OW Cold OW Warm FC Cold FC Warm

Fig. 3.6: FaasCache runs 50 to 100% more cold and warm functions, for skewed
workload traces.

3.6.2 OpenWhisk Evaluation

In this subsection, we evaluate the performance of the FaasCache system on

real functions. We focus on the performance of FaasCache’s Greedy-Dual keep-alive

implementation, and compare it to the vanilla OpenWhisk system which uses a 10

minute TTL.

In contrast to the previous subsection in which we showed the average performance

for different cache sizes, we will now also focus on the inverse problem: for a fixed

server size, how much more load can be handled with FaasCache? By leveraging

Greedy-Dual caching, FaasCache is able to reduce cold starts. This also reduces the

number of dropped requests.

OpenWhisk buffers and eventually drops requests if it cannot fulfill them. Because

FaasCache more effectively selects evictions, its higher hit rate results in functions

finishing faster, allowing more functions to be executed in the same time frame.

To examine the effect of Greedy-Dual keep-alive on cold start and dropped requests,

we use a workload trace comprising of four different functions: Disk-bench, ML

56

Tab. 3.2: FaaS workloads are highly diverse in their resource requirements and running
times. The initialization time can be significant and is the cause of the cold
start overheads, and depends on the size of code and data dependencies.

Application Mem size Run time Init. time
ML Inference (CNN) 512 MB 6.5 s 4.5 s
Video Encoding 500 MB 56 s 3 s
Matrix Multiply 256 MB 2.5 s 2.2 s
Disk-bench (dd) 256 MB 2.2 s 1.8 s
Image Manip 300 MB 9 s 6 s
Web-serving 64 MB 2.4 s 2 s
Floating Point 128 MB 2 s 1.7 s

Fig. 3.7: FaasCache increases warm-starts by more than 2×, which also reduces system
load and dropped functions.

inference, Web-serving, and Floating-point, described in Table 3.2.

In Figure 3.6, we use different kinds of skewed workloads: with a single function

having a different frequency, a cyclic access pattern, and a skewed workload with 2

sizes. We see that FaasCache’s keep-alive can increase the number of warm invocations

by between 50 to 100% compared to OpenWhisk’s TTL. The difference in the total

number of requests served (warm+cold) is because OpenWhisk drops a significant

number of requests due to its high cold start overhead and resultant system load.

Thus with FaasCache, the total number of requests that are served also increases by

2×.

57

Next, we use the skewed frequency workload and use functions from Table 3.2 to

evaluate the impact on real applications. To generate the workload, the CNN, DD, and

Web-serving functions have an inter-arrival time of 1500 ms, and the Floating-point

function has a lower IAT of 400 ms. Figure 3.7 shows the breakdown of different

function invocations for this workload on a 48 GB server. Interestingly, OpenWhisk

drops a significant number (50%) of requests due to the its high cold start overheads.

FaasCache increases the warm requests by more than 2×. Interestingly, the distribution

of warm starts is also different. FaasCache’s Greedy-Dual policy prioritizes functions

with higher initialization times, but penalizes those with large memory footprints.

Because the floating-point function has a high initialization overhead (Table 3.2),

it sees a 3× increase in hit-ratio compared to OpenWhisk. In practical terms, the

improvement in keep-alive results in a 6× reduction in the application latency.

Result: FaasCache can increase the number of warm-starts by 2× to 3× depending on

the function initialization overheads and workload skew. This results in lower system

load, which increases the number of requests FaasCache can serve by 2×.

3.6.3 Effectiveness of Provisioning Policies

All our previous results have been with a statically allocated server, and we

now illustrate the effectiveness of our dynamic vertical scaling policy described in

Section 3.4.2. The goal is to dynamically adjust the cache size based on the workload.

Our policy seeks to keep the miss speed (cold starts per second) close to a pre-specified

target. This is shown in Figure 3.8—the target is 0.0015 misses per second. In this

experiment, the cache resizing is done only when the miss speed error exceeds 30%,

and we can see that the cache size increases with the miss speed, and decreases with

58

Fig. 3.8: With dynamic cache size adjustment, the cold starts per second are kept
close to the target (horizontal line), which reduces the average server size by
30%.

it. Without the dynamic scaling, a conservative provisioning policy would result in a

constant, 10,000 MB size. In contrast, the average cache size with our proportional

controller is less than 7,000 MB. This 30% reduction means that FaaS providers

can reduce their provisioned resources without compromising on performance. The

freed-up resources can be used to accommodate additional cloud workloads (such

as co-located VMs and containers). Our dynamic scaling is extremely conservative:

increasing its agressiveness by reducing the error tolerance below 30% will reduce

average server size, but we seek to avoid the resultant small changes to memory-size

to minimize fragmentation.

3.7 Related Works

Mitigating cold starts is one of the central performance problems in FaaS, and has

received commensurate attention in both academia and industry. The initialization or

startup time of functions can be reduced by reducing container startup overheads [35,

59

176,184], or deploying functions inside ultra-light containers, VMs, or unikernels [33,

167]. While these mechanisms can reduce the cold start overhead associated with

the virtual environment creation, other sources of overheads remain, such as losing

all application initialized variables, cached files, etc. As we have shown, keep-alive

essentially serves the role of caching, and fast startup only reduces the “miss” penalty,

and does not eliminate it.

Catalyzer [95] implements new mechanisms for checkpointing and restoring appli-

cation and sandbox state, which significantly reduce the initialization cost of functions

deployed in their gvisor-based sandbox environment. Our approach is complementary

to these techniques since we focus on retaining the entire execution environment in-

stead of optimizations for restoring/recreating it. Keep-alive policies can be combined

with these optimized mechanisms to improve system-wide performance even further.

Principled keep-alive policies for functions have recently gained attention: the

recent dataset and policy from the Azure function trace [211] shows the importance

and effectiveness of keep-alive policies. In contrast to our work, their policy does not

take the function size into consideration and uses a time-series prediction approach

(effectively capturing recency and frequency), and combines it with a predictive

“prefetching” approach. As we have shown, function memory footprints are a crucial

characteristic, and the use of caching allows the use of advanced analytical and

modeling approaches for serverless computing in general. Earlier work has focused

on simple “warm container pools” [165], in which Kubernetes cluster runs a certain

number of warm containers for functions. Our caching-based policies take this one

step further and decide which container to keep-alive, and for how long. Polling to

keep cloud functions warm has also been a popular method [3, 12].

60

Our work considers functions individually—function scheduling with DAG based

approaches [65] is effective for function-chains, and are orthogonal and complementary

to our work. Hiding function latency using data caching (such as redis) for database

applications is investigated in [116]. The ENSURE [228] system handles keep-alive and

resource provisioning for CPU resources using queuing theory techniques. Our focus

is on memory-constrained keep-alive and provisioning, and CPU-focused approaches

are complementary to our work.

3.7.1 Comparative Works

FaasCache has inspired a number of new caching policies, and of everything in

this thesis has become the most popular system to reference and compare against.

Listed here are those that directly compare against FaasCache. Heterogeneous FaaS

workers [203] and predictive prewarming of containers [205] can improve performance.

Edge computing has strict resource requirements, and uses a mix of scheduling and

cache management to minimize cold starts [69,272]. Invocations can also be intelligently

scheduled, batched, and re-ordered to avoid cold starts [61, 256].

3.8 Conclusion

The main insight in this chapter is the equivalence between function keep-alive

and object caching. This can have far-reaching consequences for cloud resource

management policies. We showed that classic size and frequency-aware caching

algorithms such as Greedy-Dual can be adapted to yield effective and principled

keep-alive policies. The tradeoff between server memory-utilization and cold start

61

overheads can also be analyzed through hit-ratio curves, which can also be used for

dynamic resource allocation. FaasCache implements these caching-based techniques

for significant benefits over TLL- and LRU-based policies.

62

4. Load- and Locality-Aware Load Balancing

In this chapter, we investigate load-balancing policies for serverless clusters and

find that the locality vs. load tradeoff is crucial and presents a large design space.

Locality, i.e., running repeated invocations of a function on the same server, is a key

determinant of performance because it increases warm-starts and reduces cold start

overheads. Many functions are too popular and running all their invocations on one

worker will overload it, requiring us to sacrifice locality and spread their invocations

across the cluster. We find that the locality vs. load tradeoff is crucial and presents a

large design space.

We enhance consistent hashing and bring it to FaaS, developing CH-RLU: Consis-

tent Hashing with Random Load Updates, a simple, practical load-balancing policy

which provides more than 2× reduction in function latency. Our policy deals with

highly heterogeneous, skewed, and bursty function workloads, and is a drop-in replace-

ment for OpenWhisk’s existing load-balancer. We leverage techniques from caching

such as SHARDS for popularity detection, and develop a new approach that places

functions based on a tradeoff between function locality, cluster load, and randomness.

63

4.1 Background: Load Balancing

Managing the load of a cluster of servers is a common problem in distributed

computing systems. Load-balancing policies typically rely on some notion of “load”

of a server, such as the number of concurrently executing tasks, length of the task-

queue, cpu-utilization, etc. The first broad class is compute-oriented load-balancers,

typically used for short-running tasks and queries. Load-balancing for computational

tasks is common in scenarios like web-clusters [149]. In these systems, the tasks

can be executed on any server, servers in a cluster are largely fungible, and the task

performance largely depends on the server-specific cpu-utilization at the time.

Load-balancing techniques have received significant theoretical attention (especially

using queuing theory), as well as many practical systems [90]. From a queuing theory

perspective, policies such as least-work-left (LWL) and Join-Shortest-Queue (JSQ),

have studied near-optimal load balancing for computing load-dependent workloads

under a processor-sharing (PS) setting.

Interestingly, load-balancing for data-oriented systems, such as Content Delivery

Networks (CDNs) [183], and distributed key-value stores (such as Amazon Dynamo [90])

must also balance the load on servers, but with data locality as a key requirement.

In this context, locality refers to requests for the same object being handled by the

server, or the same subset of servers if the object is replicated. We find that FaaS load

balancing requires and benefits from both these objectives: minimizing computing

load and maximizing locality to reduce cold starts.

64

0

1

2

3

A

Local server

Functions

Server

Forward if necessary

Fig. 4.1: Consistent hashing runs functions on the nearest clockwise server. Functions
are forwarded along the ring if the server is overloaded.

65

4.1.1 Consistent Hashing

For data-oriented systems, a common technique to ensure locality is Consistent

Hashing [148, 149]. Objects are mapped to servers based on some object id or key.

Consistent hashing preserves object-server mapping even in the face of server additions

and removals, which improves locality. Figure 4.1 provides an overview of consistent

hashing. Both objects and servers are hashed to points on a “ring”, and objects

are assigned to the next server (in the clockwise direction) in the ring. Addition or

removal of servers only affects the nearby objects by remapping them to the new next

server in the ring.

OpenWhisk uses a modified consistent hashing algorithm for its default load

balancer. As functions are sent to servers, their expected memory footprint is added

to a server-specific running counter of outstanding requests. Upon completion the

memory size of a function is decremented from that server’s counter. If the counter

for a function’s “home” server would exceed the assigned memory on the server it

is forwarded along the ring. The drawback of this policy, and consistent hashing as

a whole, is that the performance can be affected by the relative popularities of the

different objects. A highly popular object can result in its associated server getting

overloaded. This problem is exacerbated in the case of FaaS functions, as we shall

demonstrate in the next section.

4.2 Load-aware Consistent-Hashing

In this section, we describe the load-balancing algorithm which is locality, stale-

load, and burst aware. We assume a cluster homogeneous servers, and a new function

66

invocation can be sent to any of the servers. Each server implements keep-alive

for functions: after successful execution, the function’s container is stored in server

memory, and evicted based on some eviction policy.

4.2.1 Tradeoff between Locality and Load

We use consistent hashing as the fundamental principle to ensure high locality:

repeated invocations of the same function occur on the same server. However, popular

functions, i.e., which are invoked very frequently, can result in overloaded servers.

Because function performance is affected by server load and resource availability,

focusing on locality alone can result in slow function execution.

Function popularities are also highly skewed: a small percentage account for a vast

majority of invocations. With pure locality-based load-balancing, the servers of these

popular functions would be severely overloaded. Functions also can run for significantly

longer than simple web requests, and thus they impose more load on servers, and the

cost of a wrong placement decision is higher. This, combined with bursty invocations,

can significantly increase the tail latency of functions. Thus pure-locality policies

such as classical consistent hashing are not sufficient, and our research question is:

Can consistent hashing be used to reduce latency due to overloaded servers? Or put

another way, can we balance the tradeoff between function locality and server-loads

with consistent hashing?

Our key idea is to extend consistent hashing to take also into account server loads,

the cold start overheads of different functions, and the bursty traffic that is a key

characteristic of FaaS workloads. In the rest of this section, we describe our approach.

67

4.2.2 Key Principle: Load-based Forwarding

To balance the locality vs. server load tradeoff, we build on a new variant of

consistent hashing called Consistent Hashing with Bounded Loads [173] (abbreviated

as CH-BL in the rest of the chapter). The key idea behind CH-BL is to use consistent

hashing to locate servers for objects, and if the servers are “full”, then “forward” the

objects to the next server in the consistent hashing ring.

For example, in Figure 4.1, function A is originally assigned to server 0, but this

“home” server is overloaded (already running many functions), and thus the function

is forwarded along the ring until a suitable non-overloaded server (2) is found. Any

5-independent hashing function can be used for determining the “home” server of a

function. Users can specify the load upperbound or the capacity of the server (b), which

determines the max load the server can sustain. Consistent hashing with bounded

loads provides many strong theoretical guarantees on the length of the forwarding

chain until the object is safely placed on a server.

Interestingly, forwarding along the ring not only avoids server overloads, but also

improves locality, even in overload scenarios. Forwarding along the ring has the

advantage that even if function is not run on its “home” server, subsequent invocations

that “overflow” still have a high warm-start probability on the servers on the overflow

chain. The warm-start probability is highest on the home server, and decays the

farther the function is from its home server. This is more beneficial than alternative

techniques such as Consistent Hashing with Random Jumps [71], which do not preserve

locality and instead forwards to randomly chosen least loaded servers.

68

4.2.3 Server Load Information

Server load is a key metric in load-balancing policies. We need to be able to

determine the relative suitability of one server over another, and thus many existing

metrics can be used to provide information about server loads. Simple metrics such as

number of running functions are insufficient, since functions can have highly variable

execution times. OpenWhisk currently uses occupied-memory used by active/running

invocations as a proxy for load, and is unsuitable for the same reason. Both these

metrics fail to capture CPU loads and lead to scalability issues when used by the

load-balancer.

Instead, we primarily rely on system-level load metrics, such as the standard Linux

1-minute load-average. In addition to CPU utilization, this also captures the I/O wait

due to cold starts, and provides a more realistic measure of load. Traditional Linux

load-average estimates the total number of processes running and ready-to-run, and

we normalize the load-average by the number of CPUs. Thus, a load-average of 8 on

an 8 core server (discounting hyperthreading) is normalized to 1.

An important practical consideration is that load information is often stale, with

the degree of staleness ranging from a few seconds to several minutes. For instance,

because the Linux load average is an exponential moving average, it is slow to change.

Furthermore, load monitoring and reporting has delays due to how frequently the

metrics are gathered at the local server, and how often they are made available to the

load-balancer. We use a simple publish-subscribe-like system, where individual servers

periodically (every 5 seconds) push their load information, and the load-balancer uses

these published loads to make all scheduling decisions.

69

4.2.4 Why CH-BL Is Insufficient

The high computing load of functions, their bursty nature, and the staleness of loads,

are the three major challenges to Consistent Hashing with Bounded Loads [173] that

the original algorithm is not designed to meet. There are a few practical considerations

and key differences between simple object/storage caching and function execution: 1.

CH-BL does not take into account the heterogeneity in running times and memory size

of the objects (i.e., functions). 2. The implicit CH-BL performance model is binary:

running-time is assumed to be uniform as long as servers are under the load-bound.

3. The server loads evolve as a result of the actual function execution and are not

just uniformly incremented as in the original algorithm. Object deletions are also

not handled explicitly: we let the lazily computed load average determine whether a

server meets the load-bound or not.

Importantly, we do not assume complete and consistent state information about

the servers. Omniscient knowledge of the execution state of all functions running all

servers can certainly be leveraged effectively to run functions on the most suitable

server. However, such maintaining such global knowledge is expensive and impractical

as far as storage consistency and latency are concerned. Thus, we are striving for

load-balancing policies which are robust to stale, incomplete, and coarse-grained

information about server states. In the rest of this section, we shall show how the

above three limitations of CH-BL can be overcome in FaaS load-balancing settings.

70

4.2.5 Incorporating Function Performance Characteristics

Different running time and performance characteristics of functions can be incor-

porated into consistent hashing. The key problem is to determine when and which

function to forward. The forwarding policies need to be cognizant of the warm and

cold running times, and the sensitivity to load of different functions.

Assume a load-bound of b, the warm time of a function is w, and the cold time is

c (slow-start). The current or the home server will be “0”, and the next server in the

ring that the function may be forwarded-to will be denoted by “1”. Running it on the

“home”/local server will result in expected time E[T0] = (p0w + (1− p0c)S(L0), where

p0 is the cache-hit/keep-alive probability, and S(L0) is the slowdown in function if

the load on the server is L0. When a function in invoked the load balancer has the

choice to either run in on the home server or forward it to the next server, where it

is less likely to be found in the keep-alive cache, because the reuse-distance is much

larger for the servers down the chain. Therefore we can compute the forwarding regret,

E[T0]/E[T1].

The properties of bounded-loads allows us to easily compute this value. The

probability of being forwarded is small, and is 1/b based on Lemma 4 of [173]. The

reuse-distance of the function, and hence the hit-rate on the original/home server will

be larger: p0 > p1 ∗ b. Based on our empirical observation of sub-linear performance

decrease due to load (elided for space), in the worst case, the home server will be

overloaded and alternative server will not be, and hence the ratio of slowdowns,

S(L0)/S(L1) > b. Minimizing the regret, we get that the function should be forwarded

if L > cb/w. Thus, the effective load upper-bound is increased by a factor of cold/warm

71

time, allowing us to run more functions per server. In our empirical evaluation, we

will show that this can significantly improve performance over plain CH-BL with

a function-agnostic constant load-bound. If the cold and warm times of a function

are not available, then they are assumed to be equal, thus this degrades to classic

function-agnostic bounded-loads.

4.2.6 Handling Bursts

Functions come in a variety of frequency classes and are also prone to unpredictable

burstiness (i.e., very low inter-arrival-times for a short duration). Identifying these

bursts and both keeping latency for such “popular” functions low and preventing

them from negatively impacting co-located functions is critical. We have found that

handling overload conditions is a key requirement and can significantly affect the tail

latency.

Bursty function invocations result in two main problems. First, they cause an

increase in server load beyond the actual load-bound, because load is only lazily

tracked. The delayed load information can result in a popular function completely

overwhelming a server, causing load “hotspots” in the cluster. The second problem is

that in extreme cases, the inter-arrival-time is less than the function latency, causing

concurrent invocations. Even if these concurrent invocations are run on a “local”

server with the function present in the keep-alive cache, there will still be cold starts,

since each invocation must run in its own container.

Our solution to these two problems caused by bursty invocations is to detect

popular function bursts, “spread” these invocations around multiple servers to prevent

72

cluster hot-spots, and use stochastic/random load updates to introduce randomness

into the load-balancing.

4.2.6.1 Detecting Popular Functions with Spatial Sampling Our goal is

to detect “popular” functions with low inter-arrival-times, in an online low-overhead

manner. Popularity detection must take into account the changing invocation fre-

quencies of different functions over time, and be low-overhead. We identify the top p

percentile of functions by their inter-arrival-times (IAT), or below some explicit IAT

threshold, to reduce unnecessary hyperparamaters.

Our approach is general: we first build a histogram of inter-arrival-times using

sampling, and then query it. We note similarities with computing reuse-distance

histograms, which are the building block of miss-ratio curves. Reuse-time histograms

are a simpler version of reuse-distances. Recall that reuse distance is the number of

unique objects accessed, whereas inter-arrival-time is simply the difference in wall-clock

times.

Our solution to identifying popular functions and function bursts is inspired by the

popular SHARDS [243] algorithm for building reuse-distance histograms. Following

SHARDS, we randomly sample invocations to track individual function IATs. This

tracking is simplified by only recording the most recent access time, and then computing

the IAT as an estimated moving average of the current IAT and now − last access.

These values are tracked for every function, and functions in the top pth percentile of

IATs are considered popular. For the sampled functions using spatial hashing, we

update their IAT. Note that this approach keeps only a small number of last-accessed-

iat entries in memory: “have-been” popular functions are naturally evicted from the

73

tracking list. Because we do not care about reuse-distances, we avoid keeping a tree

of reuse-distances, resulting in a simplified SHARDS-like algorithm (see Algorithm 1).

Algorithm 1 SHARDS-inspired popular function detection. Functions with the top
p percentile of IATs are ’popular’.

1: procedure update shards popular(func, time)
2: P ← 100.0
3: T ← 20.0 ▷ Effective sampling rate
4: R← T/P
5: T i← abs(hash(func.name))
6: if T i ≤ T then
7: if last access times.contains(func) then ▷ Already in our sample set
8: iat← (t− last access times[func])/R
9: last access times[func] = t

10: iat heap.push((iat, func))
11: else ▷ First access... iat==’inf’
12: last access times[func] = t
13: iat heap.push((t/R, func))

14: iats only ← iat heap.values()
15: pop thresh← percentile(iats only, p)

4.2.6.2 Randomly Updating Stale Loads Popular functions represent such

a large percentage of invocations yet a small number of functions, that they can be

safely spread across many servers without causing cold starts. A fair load balancing

algorithm must spread popular functions to ensure QoS for less frequent functions.

Because load information is stale, adhering to locality and load can result in servers

facing a herd-effect. Randomization is a powerful strategy to ameliorate such effects,

however, we must use it judiciously because of the strong effects of locality in FaaS

load-balancing.

Our solution is to introduce random forwarding (along the ring) which is propor-

tional to the load of the server, such that popular functions are forwarded with a higher

74

probability. If the (stale) load of the server is L, we update its load by adding gaussian

noise with a mean of the extra anticipated load on the server based on the staleness and

function arrival rate on the server (λ). Specifically, the Lnoisy = L+N (µ = λ, σ = 0.1),

where N is a Gaussian random variable. For popular functions, we compare the Lnoisy

to the load-bound. For remaining functions, we continue to use the stale load L. Thus

for highly loaded servers “near” the upper-bound, the extra random noise will result

in the popular bursty functions being forwarded more, to avoid the herd-effect.

Algorithm 2 Random Load Update Forwarding Function

1: procedure CH-RLU-forward(func, server, chain len)
2: b, b max,max chain len← system params
3: if chain len > max chain len then
4: return least-loaded-server
5: λ← 1.0/avg iat ▷ Computed from Algorithm 1
6: L = Load(server)
7: if popular(func) then ▷ Computed from Algorithm 1
8: L = Load(server) +N (µ = λσ = 0.1)

9: if L < min(cb/w, b max) then
10: server
11: else
12: CH-RLU-forward(func, next(server), chain len+1)

4.2.7 Putting it all together: CH-RLU

Our overall policy, Consistent Hashing with Random Load Updates (CH-RLU),

combines all the previously described techniques and insights. When a new invocation

arrives, we query the popular IAT threshold to determine what class of function it

is. Functions are distributed via Algorithm 2, which combines the use of SHARDS

for popularity detection, cold and warm times for increasing the effective load-bound,

and noisy loads. We bound the cold/warm ratio with a final load upper-bound b max.

75

The load bound parameters determine the locality-sensitivity: higher values of b and

b max increase locality at the risk of resource-contention delays. Similarly, higher

values of p results in more aggressive random forwarding and reduces locality.

Forwarding along the chain has diminishing returns of locality, and if the function

gets forwarded more than max chain len times, we simply run it on the least-loaded

server. If the least loaded server is also overloaded, we drop the function. We have

also implemented a simple PID controller with hysteresis for horizontal scaling, by

using server load averages as the input control signal. This horizontal scaling is

conservative, with a large dead-band of 5 minutes, and scaling is triggered only if

the at least 50% of the servers are overloaded. As we shall show in the empirical

evaluation, CH-RLU significantly reduces the variance in the loads among servers,

and thus is more amenable to this horizontal scaling policy.

4.3 Function Prioritization

In this section, we show that—in opposition to what others have argued in the

past [253]—(some) real serverless workloads are delay tolerant (Section 4.3.1), we

discuss the current status of differentiated serverless functions (Section 4.7.2) and

provide a workload characterization based on dividing functions into high- and low-

priority classes (Section 4.3.2). Our study of the delay tolerance of serverless functions

is based on a recent dataset of serverless applications [101, 102]. For the workload

characterization, we analyze traces with real serverless workloads from Microsoft

Azure [210] and present the results of one representative day (day 5 of the 2-week

trace).

76

4.3.1 Can Serverless Functions be Delayed?

In this subsection, we analyze if serverless functions can tolerate some level of delay

in their execution. This delay could come from not executing the function immediately

(e.g. through queuing), or via reduced priority in scheduling (e.g. giving less resources

to lower-priority functions). While these two mechanisms differ, the result of both is

increasing the turnaround time of the functions; this increase is not appropriate for

some functions—like those supporting interactive or real-time applications—but is

tolerable for multiple other applications, as discussed in this subsection.

Serverless functions can be triggered through several mechanisms like HTTP

invocations, cloud-native events, queue messages and timers. Functions triggered by

HTTP are time sensitive as these are synchronous requests that can timeout and

are often used in interactive applications; all other triggers invoke functions that

can tolerate delays to varying degrees. Thus, functions not triggered by HTTP are

(potentially) delayable; in the Azure trace, these constitute 59.06% of the functions and

69.07% of the invocations. Furthermore, a recent survey of serverless use cases [102]

found that 66% of applications in a large dataset have at least one delay-tolerant

function.

4.3.2 High- and Low-Priority Workloads

Considering the two function classes described in the prior subsection—high and

low priority—we analyze the Azure traces applying this division in the workload. For

the high priority class, we consider HTTP-triggered functions. For the low priority

class, we consider all other functions.

77

102 105 108 1011

Function duration (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

10−4 10−2 100 102

IAT (minutes)

High-priority
Low-priority

Fig. 4.2: Left: CDF of the function durations. Right: CDF of the average function
inter-arrivals. Functions are divided into two classes: high and low priority.

High-priority functions constitute a significant portion of the workload, though

the low-priority functions are greater in number and account for more than 2/3 of the

invocations. Specifically, high-priority functions constitute 41% of the functions and

31% of the invocations, versus 59% of the functions and 69% of the invocations for

the low-priority.

Figure 4.2 (Left) shows the cumulative distribution function (CDF) of the average

function durations. The function durations are similar for both classes, with high-

priority functions being slightly shorter (median 0.2 vs 0.8 minutes). Figure 4.2 (Right)

shows the CDF of the per-function average inter-arrivals; the IATs for both classes

are similar.

78

0

1

2

3

A

Local server

Functions

Server
Forward if overloaded

Pool-1

(High-priority functions)

Pool-2

(Low-priority functions)

Overflow

Fig. 4.3: k-CH-RLU partitions a cluster into multiple server pools and runs server-
load-aware consistent hashing in each pool. Functions are forwarded if servers
are overloaded, or to a lower-priority pool if the entire pool is.

4.4 Priority Based Consistent Hashing

In this section, we extend the load-balancing algorithm to take into consideration

function priority, in addition to the characteristics in Section 4.2.

4.4.1 Quality of Service Architecture

To support quality of service (QoS) for functions of different priority levels, we use

a two-stage load-balancing architecture (see Figure 4.3). The cluster is partitioned

into multiple pools, one for each priority level. For ease of exposition and without

loss of generality, we consider two levels: high- and low-priority functions, and thus

two corresponding pools. Within a single pool, functions are load-balanced among

servers using a load-aware consistent hashing technique. Our approach is modular:

79

each pool runs an independent load-balancing policy, which is the focus of most of

this section. This approach also preserves function locality, which is important for

reducing cold-starts, as we describe next.

4.4.2 k-CH-RLU

Our overall policy, Consistent Hashing with Random Load and Updates with k

pools (k-CH-RLU), extends the techniques and insights detailed in Section 4.2.7.

Upon a new function invocation, it runs in its pool using the forward procedure

in Algorithm 2, which combines the use of SHARDS for popularity detection, cold

and warm times for increasing the effective load bound, and noisy loads. The initial

server is determined using a consistent hashing function. We bound the cold/warm

ratio with a final load upper bound, b max. The load-bound parameters determine

the locality sensitivity: higher values of b and b max increase locality at the risk of

resource-contention delays. Similarly, higher values of p results in more aggressive

random forwarding and reduces locality.

Our two-level architecture is modular and allows us to parameterize different

load-balancing policies for different pools. Lower-priority pools are run with a higher

load bound b max, and thus tolerate more overloaded servers, at the risk of lower

function performance. Forwarding along the chain has diminishing returns on locality,

and if the function gets forwarded more than max chain len times, it triggers the

overflow condition.

Function prioritization and QoS are controlled via the server pools: Each function

has a default pool based on their priority level, with higher-priority functions having

80

lower pool numbers. The high-priority functions recursively overflow to the next

lower-priority pool, and thus have good locality because all pools use our consistent

hashing approach. The high-priority functions can thus overflow and potentially use

the entire cluster in case of workload spikes, preserving their QoS. The lower-priority

pools thus also serve as a “burst buffer”, crucial considering the bursty nature of

functions. Low-priority functions can’t make use of higher-priority servers even if they

are available, since we want to be able to handle bursty invocations of higher-priority

functions. For the lowest-priority pool, we run the function on the least-loaded server

in their pool. If the least loaded server is also overloaded, we enqueue the function.

Pool Sizing. The priority pools are sized proportional to the number of functions

registered at different priority levels. Thus, if 25% of all functions are low-priority,

then 25% of the servers are in the low-priority pool and the rest are in the high-priority

pool. Periodically, we recompute this ratio based on the currently registered functions,

which may lead to resizing the pools. Importantly, locality is preserved even after

pool resizing because of consistent hashing.

4.5 Implementation

We have implemented our consistent hashing with random load update (RLU)

policy and other load-balancing policies in OpenWhisk, a popular FaaS system. Our

changes amount to more than 1,700 lines of code across many OpenWhisk components,

but are primarily in the load-balancer class. In this section, we describe major

implementation details, as well as key performance optimizations which significantly

improve OpenWhisk performance and scalability by more than 4×.

81

Virtual Machine

Virtual Machine

Virtual Machine

Controller

Load

Balancer

Invocation

Redis

Invoker

Function

Invoker

Function
Function

Function

Function and system
metrics sent async

Invocation routed
to Invoker

Invocation enters
system at Controller

Invocation executed
on Invoker

Function

Fig. 4.4: System diagram of relevant OpenWhisk components and communication
used to schedule and run function invocations.

Our policies are implemented by modifying the load-balancer module of OpenWhisk

(see Figure 6.2). CH-RLU is implemented by modifying the existing OpenWhisk

“container sharding” policy, which also uses consistent hashing, and forwards functions

using only available memory as the load metric. We use OpenWhisk’s existing

consistent hashing implementation, permiting an “apples to apples” comparison,

and also making CH-RLU a “drop-in” replacement for the OpenWhisk default load-

balancing. At the invoker level, we adapt FaasCache’s GreedyDual keep-alive policy,

which increases the keep-alive effectiveness compared to OpenWhisk’s default non-

resource-conserving TTL eviction [113].

The CH-RLU algorithm described in the previous section requires two main

additional pieces of information from each invoker/server: the load averages, and the

82

cold/warm running times of functions. Both of these are periodically (every 5 seconds)

captured and stored in a centralized redis key-value store. The load-balancer in the

controller reads these asynchronously: working with stale and inconsistent metrics is

our key design goal. The default load-bound, b, is 1.2, and the max load, b max is

6. Popularity threshold is set to 20%. We did not observe performance to be very

sensitive to these parameters, and thus do not need to auto-tune them, and they are

suitable as user-inputs.

4.5.1 Performance Optimizations For OpenWhisk

Since our goal is to run functions under high load, we ran into a large number of

OpenWhisk performance and scalability bottlenecks. We found default OpenWhisk to

be almost unusably slow and unstable even under reasonable load. We present their

details and our actions to overcome them, hoping that the fast-growing serverless

computing research field can benefit from our lessons.

In our experience, the primary source of scalability bottlenecks when concurrently

managing Docker containers. We found significant contention in dockerd, Docker’s

control daemon which handles all the container lifecycle events. Even at moderate

loads (normalized server load average close to 1), high dockerd contention can increase

tail latencies by several minutes!

Currently, OpenWhisk pauses each container after function execution, which

prevents it from being scheduled by the CPU. It then resumes the container before

running the next invocation of the same function (assuming a warm start). Each

invocation therefore requires these two additional (pause/resume) events to be handled

83

by dockerd, which results in significant lock contention. Because of the FaaS pro-

gramming model, the pausing is not necessary, since nothing in the container can run

after a function has returned. Therefore, we remove these redundant pause/resume

operations to reduce dockerd contention. This reduces the OpenWhisk overhead by 0.2

seconds per-invocation on average. More importantly, by reducing dockerd contention,

we were able to run a much larger number of concurrent functions.

An even larger source of scalability bottleneck is network namespace creation

time. Using the default bridge networking requires each invocation to create a new

TUN/TAP network interface. We found this to be a very expensive operation because

of Linux network stack overheads (several 100 ms), and because of dockerd’s userspace

lock (futex) contention for its networking database. We found that as the historical

total number of containers launched grows, so does the size of the network-interface

database. Dockerd reads and updates this database under the critical section, and the

larger database results in higher lock contention. As a result, we were unable to use

VMs/servers with more than 4 CPUs after 20 minutes of sustained load, since the

dockerd contention resulted in many functions timing out (timeout was 5 minutes)!

We sidestep this problem by not using bridge networking, but instead using

Docker’s host network option and assigning each container a unique port on the host.

Implementing the network change required updating the OpenWhisk runtimes used to

wrap functions to monitor their specified port. This change allowed us to run functions

on larger invokers and under more sustained load, and eliminated most timeouts.

Finally, after a certain request rate threshold, we found the default nginx Open-

Whisk frontend would crash and return 502 BAD GATEWAY for all URLs. We did

not discover the cause of this problem, and simply bypassed it by letting function

84

invocations to communicate with the controller/load-balancer directly.

CPU limits. OpenWhisk uses the --cpu-shares option to set container CPU priority.

This has an unintended consequence of allowing functions to use more than one CPU

core while running. Major FaaS providers constrain functions to a single core unless

they have extremely high memory allocations (¡1 GB). In order to stay in line with

providers and prevent outsized impact on system load from some functions, we use

the --cpus flag instead to assign each function no more than one CPU.

Together, these performance optimizations have allowed us to run OpenWhisk

on invokers that are 4× larger, and serve more than 6× the load, without dropping

functions due to timeouts. We plan to upstream all these performance optimizations

in OpenWhisk to provide a higher-performance and lower-jitter control plane for FaaS

research and production deployments.

4.6 Evaluation

In our evaluation we present the effectiveness of our load-balancing policy (RLU)

using an implementation in OpenWhisk. Our primary goal is to quantify the impact

of different load-balancing policies on function latencies under varying load conditions.

4.6.1 Evaluation Environment

HW and SW Config. We run OpenWhisk in a distributed mode across 9 VMs. 8

invokers are each in their own VM with 16 vCPUs and assigned to use 32 GB RAM

for hosting functions. The final VM hosts the controller, load-balancer, and remaining

services, with 12 vCPUs and 50 GB RAM to ensure it is not a bottleneck. Metrics

85

CH-BL LL RLU OW+GD OW+TTL
LoadBalancing Policy

0

1

2

3

4

5

Gl
ob

al
 L

at
en

cy
 In

cr
ea

se
 %

(a) Global Latency Impact

CH-BL LL RLU OW+GD OW+TTL
LoadBalancing Policy

0

1000

2000

3000

4000

5000

In
vo

ca
tio

ns

Cold
Warm

(b) Invocation Throughput

Fig. 4.5: Latency and throughput under low-load. Locality-agnostic least-loaded
policy has more cold starts and a higher impact on latency.

86

about system load were captured every 5 seconds by calling uptime on each invokers

VM and normalized by the number of CPUs on that system. All latency information

was recorded by the client, timing the HTTP request until the request completed.

We make no policy changes to the invoker eviction policy, but use the changes from

FaasCache [113] for eviction decisions on the invoker.

Contenders. In addition to our proposed load balancing policy, we compare against

the default OpenWhisk load balancing policy (described in Section 4.1.1) with Greedy-

Dual (OW+GD) and 10 minute Time-To-Live (OW+TTL) eviction policies, and

implement two other load balancing polices for comparison: least loaded (LL), and

consistent hashing with bounded loads using stale load-averages (CH-BL). For CH-

RLU and CH-BL, we set the max chain len = 3, a high max load bound, b max = 6,

and a popularity threshold, p = 20%. We did not find performance to be particularly

sensitive to the load-bound: the function latencies showed little changes across load

upper-bounds of [2− 8].

Metrics. We examine three main metrics: cold starts, the global average latency

across all invocations, and the evenness with which load is spread amongst workers.

The first two directly and obviously relate to end user service quality but the third is

more intricate. Providers pay for servers to run functions on and don’t want those

resources going unused and therefore wasted. Equally, a server that is overloaded

(not enough CPU or memory resources) will cause a spike in end user latency due

to contention of queuing. To quantify the global impact on latency from placement

decisions, we normalize each invocation’s latency by the ideal (minimum) latency, take

the per-function mean of these, multiply each mean by the percentage of invocations

that function had in the whole trace, and finally take the mean of those function latency

87

means. This is essentially a weighted average of latency-increase (i.e., slowdown). It

gives some balance between outcomes, for example, a rare function may get several bad

placement decisions and thus increase the global latency, or a very common function

generally has warm hits and does not impact latency.

Workload. We convert 12 functions from FunctionBench [152] to run on OpenWhisk.

To create a more realistic variety of functions, we create ten copies of each function

with unique names, giving us 120 unique functions. Each function clone is invoked

at different frequencies mimicking the arrival frequencies of the Azure trace [211].

Our load is generated using the closed-loop load generation tool Locust [166] to

invoke functions, running 20 threads for low load, and 120 for heavy load stressing.

Locust cannot easily have dedicated threads to invoke each function, so we convert

the “frequencies” into weights and use those to randomly choose what function will

be invoked next. Each thread will iteratively invoke a random function, and after its

completion wait 0-1 seconds before invoking another function. Unless stated otherwise

all experiments are run with the above settings, under heavy load, for 30 minutes, and

results are the average of 4 runs.

4.6.2 Load-balancing Performance

When we run them under light load in Figure 4.5, the policies that use a locality

mechanism are essentially identical. The load on any one server is never high enough

to impact co-located functions and we never have to forward invocations and incur

excess cold starts, giving us a “lower bound” on load balancing. The low 1-2%

latencies in Figure 4.5a we see here are due to initial cold starts for functions and the

varied overhead imparted by the system analyzed earlier. The least loaded policy is

88

CH-BL LL RLU OW+GD OW+TTL
LoadBalancing Policy

0

10

20

30

40

50

Gl
ob

al
 L

at
en

cy
 In

cr
ea

se
 %

(a) Latency

CH-BL LL RLU OW+GD OW+TTL
LoadBalancing Policy

0

5000

10000

15000

In
vo

ca
tio

ns

Cold
Warm

(b) Throughput

0 5 10 15 20 25 30
Time (min)

0

20

40

60

80

Lo
ad

 V
ar

ia
nc

e

CH-BL
LL
RLU
OW+GD
OW+TTL

(c) Server Load variance

Fig. 4.6: At high server loads, our RLU policy reduces average latency by 2.2x at
higher throughput, compared to OpenWhisk’s default policy. It does so by
keeping cold starts and load-variances low.

89

significantly worse as it’s lack of locality causes excessive cold starts as evidenced by

the high number of cold starts in its invocation results detailed in Figure 4.5b.

Next we run the policies under our heavy load scenario, and get a clear distinction

between how each of them performs. The two versions of OpenWhisk in Figure 4.6a

only increase latency by 11% and 14% respectively which is rather good. They cannot

complete with RLU whos increase is less than half of that, a tiny 5% impact on global

latency. CH-BL and least loaded increase global latency by over 40%, showing terrible

performance in that metric and on invocation throughput.

The wide gap between policies can be understood by comparing the load variance

between their workers (Figure 4.6c). OpenWhisk’s default policy is to only move a

function to another server if the “home” one does not have available memory to run

it. While very good for locality (getting fewer cold starts than RLU in Fig 4.6b),

it creates severe imbalance on the worker loads. A few workers grow to extremely

high load and their functions suffer, while others are mostly empty. RLU intelligently

forwards invocations when a worker is near overload, keeping load variance low while

protecting locality. Least loaded actually does the best at keeping equal load amongst

workers, but at the cost of poor locality.

4.6.2.1 Handling Bursty Traffic Next we take two different bursty workloads

to see how the polices handle changes in invocation patterns. The first uses the same

closed-loop load generation but adjust the weights by which functions are invoked.

Every 30 seconds two of the top weighted functions are chosen to become bursty, and

have their weights set much higher. At the end of a burst their weights are returned to

normal and another two functions are chosen. As can be seen in Figure 4.7a our policy

90

CH-BL LL RLU OW+GD OW+TTL
LoadBalancing Policy

0

10

20

30

40

50

60
Gl

ob
al

 L
at

en
cy

 In
cr

ea
se

 %

(a) Global Latency Impact

0 5 10 15 20 25 30
Time (min)

0

20

40

60

Lo
ad

 V
ar

ia
nc

e

CH-BL
LL
RLU
OW+GD
OW+TTL

(b) Worker Load Variance

Fig. 4.7: RLU improves latency by 10% compared to OpenWhisk under bursty load
conditions, while keeping a low worker load variance.

91

CH-BL LL RLU OW+GD
LoadBalancing Policy

0

50

100

150

200

250

Gl
ob

al
 L

at
en

cy
 In

cr
ea

se
 %

Fig. 4.8: Global latency impact under a 30-minute long rising burst load from an
open-loop generator. RLU reduces latency by 17% compared to OpenWhisk.

acheives a 17% lower impact on global latency than OpenWhisk with GreedyDual.

RLU represents a 60% reduction to latency over OpenWhisk with its default TTL

backend. The more advanced eviction decision choices have a clear effect on improving

the system even when the load balancer does not optimize for it. The longer running

functions in our workload have a larger effect on system load and the load balancer

must be aware of this impact and either spread that heavy popular function around

or move other functions off of that server. Again, OpenWhisk does not take load

into account and severely overloads some servers while languishing others. We see

more sky-high load variances from this bursty workload in Figure 4.7b. Policies that

monitor load, our RLU, CH-BL, and least loaded keep tighter control on load variance.

The second busrty load is a 30 minute long-rising burst, starting with just a few

invocations per second and reaching a sustained peak of roughly 18 invocations per

second at roughly 25 minutes. We generated this load with a custom open-loop load

tool that fires invocations but does not block waiting for completion. New invocations

92

0 5 10 15 20
Time (min)

0

2

4

6

8

10

No
rm

al
ize

d
La

te
nc

y Invoker Start

Fig. 4.9: The average normalized function latency over time for a dynamic workload.
New invokers are launched at the dashed lines, keeping the latency in check.

are continually fired in a preset pattern of function types and times. The global latency

impact of this final scenario can be seen in Figure 4.8. Only the final 10 minutes of the

workload place the system under extreme load, and the differences between policies

reflect this. CH-BL and least loaded cannot keep up with the suddenly changing load,

causing a latency increase of over 100% and 200% respectively. RLU’s 25% increase in

global latency is still significantly better, 30% lower, than OpenWhisk. Our policy is

able to make ideal choices for function placement under a varient of realistic workload

scenarios.

4.6.2.2 Scaling Lastly we want to demonstrate how our policy reacts to scaling

the number of workers as demand increases. We start our cluster with only 3 invokers

and increase applied load up to the heavy load scenario above. Rather than starting

with the 120 threads of the heavy load with this smaller cluster, we adjust the scenario

to start with a single thread and add a new one every 6 seconds, reaching the final

thread count at about minute 12.

93

As the average invoker load increases, the controller activates a new worker and

starts directing work towards it. New workers are kept under the load bound of 6

and see load similar to our previous experiments that had a constant load. Figure 4.9

shows the function latencies (normalized to respective min. warm times). Preceeding

each worker being started is a rise in overall latency, which then falls after the invoker

has come online and starts taking additional load. Thus, our horizontal scaling is

able to dynamically keep the function latency in check, even though it only uses

coarse-grained server load metrics.

4.6.2.3 Load-balancer Overhead More complicated routing decisions naturally

mean they are more computationally expensive to perform. Even so, RLU is on

significantly slower making individual routing decisions, taking on average 1242.6µs to

OpenWhisks’ 472.3µs. Such times represent a fraction of the time spent per-request

by the system and is made up for by our more optimal placements.

4.6.3 Multi-pool Load-balancing Performance

So far we have seen how our load-balancing policy performs within a single pool

when all functions have the same priority level. In this subsection, we evaluate the

performance with multiple priority levels and corresponding pools. We are interested

in the relative difference in performance between the pools, as well as how effectively

we can provide service differentiation (by comparing to a single cluster).

4.6.3.1 Two-pool performance For ease of exposition, we use two priority levels:

high and low. Functions are evenly assigned priority levels (i.e., half are high priority).

We use a cluster of size 8, with 4 servers in the high-priority pool.

94

2-RLU RLU OW
0

10

20

30

40
L
a
te

n
c
y
 I
n
c
re

a
s
e
 %

High Prio

Low Prio

Fig. 4.10: Function prioritization improves latency for both high and low priority
functions, and provides significant service differentiation and improvement
over OpenWhisk.

Figure 4.10 shows the increase in latency for both high and low priority functions,

compared to their best-case warm start performance under no system load. The “OW”

and “RLU” categories are the baseline performance in a single unpartitioned cluster

without any function priorities. With 2 pools (2-RLU), we can see a that the latency

of high-priority functions decreases compared to low-priority functions. By splitting

the cluster in two, the locality increases, and compared to the single-pool RLU, we

see a decrease of 8% in latency for high-priority and 10% for low-priority functions.

Compared to OpenWhisk, high-priority latency decreases by 5×, and low-priority

latency increases by 20%, as OpenWhisk is not priority-aware. Thus, k-RLU can

provide significant service differentiation over OpenWhisk, improving performance for

both low and high priority functions compared to our single-pool RLU.

95

2-RLU RLU OW
0

10

20

30

40

L
a
te

n
c
y
 I
n
c
re

a
s
e
 %

High Prio

Low Prio

Fig. 4.11: Latencies on a 25% smaller cluster. High-priority functions see a 2× decrease
vs. OpenWhisk.

4.6.3.2 Deflated lower-priority pool Service differentiation also allows us to

reduce the size of the low priority pool and thus the overall cluster size—improving

utilization and efficiency. We now evaluate function performance in such a differentiated

setup. Half the functions are low-priority, but the size of the low-priority pool is half

of that in the previous experiment. That is, we shrink the initial cluster of 8 by 25%

to 6 servers, with 4 in the high-priority pool and only 2 in the low-priority pool.

Figure 4.11 shows the latency in such a setup. The single-pool RLU and OpenWhisk

configurations are using the full original cluster size of 8 servers, while the 2-RLU has

the 6 server configuration described above. Because of the reduction in total resources,

the difference in performance between the 2-RLU and the single-pool methods like

RLU and OpenWhisk is starker. Compared to single-pool RLU, high-priority functions

see a 10% decrease in latency, and the low-priority functions see a decrease of 20%.

Compared to OpenWhisk, we see a large 3x reduction in high-priority latency and

96

2-RLU RLU OW
0

2000

4000

6000

8000

10000

12000

T
h

ro
u

g
h

p
u

t
(#

In
v
o

c
a

ti
o

n
s
)

High Prio

Low Prio

Fig. 4.12: Throughput with deflatable cluster.

an increase of 10% in low-priority latency. Thus, we can reduce the overall function

latency by almost 2x even while reducing total cluster size by 25%.

A similar analysis of throughput is presented in Figure 4.12. The 2-pool small

cluster configuration achieves 12% average higher throughput compared to OpenWhisk

and 27% compared to single-pool RLU. Interestingly, RLU drops a larger number of

functions owing to its strict load-bound, and thus achieves lower throughput.

4.7 Related Work

4.7.1 Load Balancing Related Work

Package-aware load balancing [46] identifies and uses function code dependencies

(software packages) as an important source of data locality. While this is an important

97

factor, we focus on in-memory locality of kept-alive functions, since memory capacity

is much smaller than permanent storage and caching functions in memory has a very

large performance impact. CPU contention and interference is a major source of

performance bottlenecks for co-located functions, and adjusting CPU-shares using

cgroups can provide significant benefits [227,229,230]. The load-locality tradeoff we

explore is complementary to these CPU scheduling optimizations. The repetitive

nature of functions and their workflows can also be used to improve resource utilization

and latency [88,135,194,264]: our load-balancer is stateless for the sake of simplicity

and can be enhanced with these techniques if necessary.

The tradeoff between locality and performance has also been explored in the

context of delay scheduling [269] for data-parallel applications like MapReduce. Load-

balancing is seen as a “dispatch” problem in queuing theory, and the FaaS cluster

system most closely approximates G/G/PS, since the arrivals and service times are not

markovian. Techniques such as “join the shortest queue”, and “least work left” [125]

have been shown to be effective. The online-greedy policy evaluated in the previous

section closely approximates least-work-left. However, it is difficult to implement in

practice since the running times of functions is hard to predict due to their volatile

arrival distribution mixtures and high variances in running time due to various system

interference effects.

4.7.2 QoS Related Work

Differentiated services in serverless. Sequoia [232] is a serverless framework

with a QoS scheduler based on a simple priority-based queue; however, the issue of

starvation in the presence of a continuous arrival of high-priority functions is not

98

considered. Furthermore, the framework is based on a completely new design that does

not support synchronous function calls. In contrast, our solution was implemented

on top of OpenWhisk and considers both synchronous and asynchronous functions.

Bilal et al. [58] analyzed the trade-off space between performance and cost that arises

from different CPU/RAM configurations and the resulting function performance.

This approach is orthogonal to ours and can be leveraged by the provider to offer

differentiated services that span this configuration space. Qiu et al. [195] suggested that

providers could implement resource over-commitment for FaaS workloads with loose

latency objectives; our approach ties over-commitment with current demand, with a

dynamic mechanism that supports handling of bursts in high priority workloads at the

expense of low priority ones. Real-time serverless [182] is a work-in-progress system

that describes an interface for specifying invocation rate guarantees and proposes

delivering them via admission control and predictive container management.

Multi-pool cluster scheduling. Virtual cluster pools have been used for dynamic

resource management in datacenters [67], to handle increased workloads in data

analytics clusters [159], for QoS multi-class admission control [91], and to decrease the

delays of scheduling decisions [220]. We use this technique for service differentiation,

and complement it with a novel control-based dynamic resizing mechanism to support

burst absorption in serverless workloads.

Current Status of Differentiated FaaS Invocations. A recent empirical

study [232] found that current cloud providers (AWS, Azure, GCP and IBM) treat

HTTP functions differently from those triggered by other means, frequently via

undocumented behavior, including different concurrency limits and prioritization

versus background functions. In addition, while asynchronous functions are queued

99

and thus the user understands that they may not execute immediately, providers don’t

typically enqueue synchronous functions but rather return with an error if peak exceeds

concurrency limits or provider capacity.1 Thus, the major public cloud providers are

already implicitly defining two classes of functions: high priority (synchronous) and

lower priority (asynchronous), with the latter being delay-tolerant.

In OpenWhisk asynchronous functions are defined with the async keyword and

follow a different execution path than synchronous ones. However, the platform does

not use any mechanism to delay or execute them at a lower priority. A solution

that treats async functions as delay-tolerant, scheduled with a lower priority than

synchronous functions, can be added to OpenWhisk without API modifications.

4.8 Conclusion

In this chapter we have explored the tradeoff between locality and load for serverless

functions. Our CH-RLU policy can tackle the challenges of function heterogeneity,

workload skew, bursty workloads, and stale loads. We enhance consistent hashing to

yield a simple and practical load-balancing policy. Empirical evaluation shows substan-

tial improvements in function latency (by more than 2×) compared to OpenWhisk’s

load balancing strategy.

1 An exception is GCP which handles synchronous calls in best effort fashion,
performing queuing but not ensuring zero drops [232].

100

5. Ilúvatar: A Low-Latency FaaS Research Control Plane

Providing efficient Functions as a Service (FaaS) is challenging due to the serverless

programming model and highly heterogeneous and dynamic workloads. Current

open-source FaaS control planes like OpenWhisk introduce 100s of milliseconds of

latency overhead, and are becoming unsuitable for high performance FaaS research and

deployments. In this chapter we present the design and implementation of Ilúvatar,

a fast, modular, extensible FaaS control plane which reduces the latency overhead

by more than two orders of magnitude. Ilúvatar has a worker-centric architecture

and introduces a new function queue technique for managing function scheduling and

overcommitment. Ilúvatar is implemented in Rust in about 13,000 lines of code, and

introduces only 3ms of latency overhead under a wide range of loads, which is more

than 2 orders of magnitude lower than OpenWhisk.

5.1 Why a new control plane?

We believe that the FaaS control plane is an important component of the modern

cloud ecosystem, and presents many optimization opportunities and interesting research

questions in system design.

Performance. Because of its central role in coordinating all aspects of function

101

execution, the control plane plays a major role in determining function performance.

Managing the function execution lifecycle for hundreds of concurrent invocations

imposes a control plane overhead, and increases the end-to-end latency. This control

plane overhead can be significant, and affects all function invocations, including and

especially the “warm starts”.

In experiments we witnessed OpenWhisk’s 50 percentile latency overhead to be

more than 10ms, which is already a significant increase in latency for small functions

which dominate real-world FaaS workloads. Worryingly, the 99 percentile overhead

is much higher, and rises to as much as 600ms, more details are in Section 5.5. To

emphasize, for a median function in the Azure workload which runs for 500 ms,

OpenWhisk can increase its latency by 100%. Thus, the control plane plays a crucial

role in function performance. We note that these are the best-case warm-start latencies,

when the function’s containers are fully initialized and in memory. Since function cold

starts impose such a major performance penalty (increasing latency by more than

10×), mitigating them has been a major research focus. However, because of temporal

and spatial locality of access, caching and prefetching techniques can be extremely

effective, and the cold start rate is often less than 1% of all invocations [113]. The

majority of invocations are thus “warm”, where the performance is dominated by

control plane overheads.

5.1.1 FaaS Control Planes

All aspects of function execution are orchestrated by a FaaS control plane, which

are implemented by frameworks like OpenWhisk [17]. For using a FaaS service, the

user interacts with the control plane for registering and invoking functions, tracking

102

their status, etc. The control plane manages the resources of a cluster of servers, and

schedules functions on to them based on its load-balancing policies.

In OpenWhisk, user requests for invoking a function go through a reverse proxy

(NGINX) to the central controller, which implements, among other things, load-

balancing (a variant of consistent hashing with bounded loads by default). The

controller puts the function invocation request into a shared Apache Kafka [16] queue.

Inside the worker, the invoker service pulls function invocations from the Kafka queue

based on that worker’s own resource availability. Docker containers running a Go-

based control plane agent are used to isolate functions, and each worker maintains

a container pool of initialized/warm containers. OpenWhisk logs function results

in a CouchDB instance. Importantly, both Kafka and CouchDB are on the critical

path, and add 100s of ms to invocation latency. OpenWhisk is highly modular and

distributed, with many networked services. All of these, combined with the JVM GC

(it is implemented in Scala), results in large and unpredictable latency spikes [114,214],

with slowdowns of more than 10, 000× reported [282].

We believe that the FaaS control plane is an important component of the modern

cloud ecosystem, and presents many optimization opportunities and interesting research

questions in system design.

Performance. Because of its central role in coordinating all aspects of function

execution, the control plane plays a major role in determining function performance.

Managing the function execution lifecycle for hundreds of concurrent invocations

imposes a control plane overhead, and increases the end-to-end latency. This control

plane overhead can be significant, affecting all function invocations, including and

especially the “warm starts”. This overhead (end-to-end latency minus the function

103

12 4 8 16 32 4648
Concurrent Invocations

0

200

400

600
Co

nt
ro

l P
la

ne
 O

ve
rh

ea
d

(m
s)

OpenWhisk 50%-ile
OpenWhisk 99%-ile
Ilúvatar 50%-ile
Ilúvatar 99%-ile

Fig. 5.1: The latency overhead of the control plane, as the number of concurrent
invocations increases. OpenWhisk overhead is significant and has high
variance, resulting in high tail latency. Ilúvatar reduces this overhead by
100x.

code execution time) for the PyAES function from FunctionBench [153] is shown in

Figure 5.4.

The figure shows the 50 and 99 percentile overheads as the number of concurrent

invocations are increased. In each case, we are invoking the function repeatedly in a

closed-loop, and concurrent invocations are achieved by using multiple client threads.

All invocations are warm starts. The experiment is run on a 48 core server (more

details in Section 6.5), and the figure thus shows the performance at low and medium

load conditions.

From Figure 5.4, we can see that the OpenWhisk latency overhead is more than

10ms, which is already a significant increase in latency for small functions which

dominate real-world FaaS workloads. Worryingly, the 99 percentile overhead is much

higher, and rises to as much as 600ms. We also see strange inversions in the scaling

behavior: the overhead reduces for certain load-levels, and then increases again.

104

This high overhead, high variance, and uncertain scaling behavior, results in many

challenges for FaaS providers. Due to these issues, low-latency functions see severe

performance degradation, and resource provisioning and capacity planning becomes

harder due to the high variance and performance unpredictability.

Some of these latency overheads are an artifact of the architecture. The shared

Kafka function queue can be a major bottleneck; and there are no explicit backpressure

or load regulation mechanisms, which is compounded by the CPU overcommitment.

For the sake of comparison, the figure also shows the latency overhead of Ilúvatar in

the same environment. We are able to achieve a per-invocation mean overhead of less

than 2ms for almost all the load conditions. Importantly, the tail overhead is also

small: less than 3ms for less than 32 concurrent invocations, rising to 10ms when the

system is saturated.

To emphasize, for a median function in the Azure workload which runs for 500

ms, OpenWhisk can increase its latency by 100%. Thus, the control plane plays a

crucial role in function performance. We note that these are the best-case warm-start

latencies, when the function’s containers is fully initialized and in memory. Since

function cold starts impose such a major performance penalty (increasing latency by

more than 10×), mitigating them has been a major research focus. However, because

of temporal and spatial locality of access, caching and prefetching techniques can be

extremely effective, and the cold start rate is often less than 1% of all invocations [113].

The majority of invocations are thus “warm”, where the performance is dominated by

control plane overheads.

System Design. As evidenced by the OpenWhisk architecture presented earlier,

FaaS control planes are large, complex distributed systems. Due to the continually

105

evolving needs of FaaS applications and emergence of new sandboxing techniques

(such as lightweight VMs like Firecracker [33]), they are sandwiched between the scale

and heterogeneity of FaaS workloads on one hand, and the deep stack of OS and

virtualization components on the other.

For instance, systems for running web services or microservices do not have to

deal with large and highly variable sandbox management overheads, nor with highly

heterogeneous request sizes. For reducing tail latency, these systems can often rely

on the OS CPU scheduler for processor sharing, but can manually perform CPU

allocation at a very fine granularity [144], or use queuing theory techniques [192]. At

the other extreme, for longer running containers and VMs, their control planes, like

OpenStack or Kubernetes face a much lower rate of VM arrivals and departures. and

can do careful and “hard” resource allocation using bin-packing [87].

Functions are highly heterogeneous, and can be seen as both latency-sensitive web

requests and large containers requiring significant system resources for several seconds.

FaaS control planes thus have to do both low-latency allocation and pack CPU and

memory resources on their servers carefully to maintain high system utilization. Thus

FaaS control planes are one of the more perfect microcosms of challenges in resource

management and control in large scale distributed computing.

A clean-slate control plane design helps us investigate the fundamental performance

tradeoffs and challenges in this fast-evolving ecosystem. Our new implementation

also helps to identify the current performance bottlenecks and new avenues of OS

optimizations.

Platform for Experimental Systems Research. Performance-focused FaaS

research is already challenging due to the extreme scale and heterogeneity of the

106

workloads. These challenges are compounded by existing control planes like OpenWhisk

that are unfortunately highly unpredictable. The control plane jitter and the extreme

bimodal cold vs. warm latencies make it difficult to do reliable and reproducible

research [179], and subtle environmental and configuration effects can mask the true

effects of new research optimizations. However, it continues to be a key component

in developing and evaluating FaaS research [35, 39, 113, 114, 211, 229, 279]. With

OpenWhisk, function performance can be severely affected by a myriad of configuration

options, such as insufficient memory for CouchDB, networking configuration, Docker

configuration, etc.

Given the importance of the control plane, we want predictable performance to

a large degree. In our experience, research in FaaS is often hindered by the large

overheads and complexity of existing control planes. Thus, Ilúvatar is designed from

the ground-up to be lightweight and provide predictable performance under different

conditions. Our system implementation can potentially accelerate the development of

new optimizations, clarify our understanding of performance characteristics of this

relatively new stack, and provide a platform for robust experiments. With a robust

platform, the community can share knowledge and advances, while being able to

compare against a well-known and trusted baseline.

5.2 Ilúvatar Design

Ilúvatar’s design is guided by our experience of OpenWhisk performance, and by

our goals of providing predictable performance, modularity, and a control plane for

reliable FaaS research.

107

5.2.1 Architecture and Overview

The Ilúvatar control plane is spread out across a load balancer and the individual

workers, and sits above the containerization layers. We intend for Ilúvatar to be the

narrow waist [191] in the FaaS ecosystem: with optimizations for DAG scheduling [280],

state handling [223], and horizontal scaling [114] implemented above it, and sandboxing

and containerization below it. This architecture was motivated by the key question:

Can fast FaaS control planes be implemented with strict layering and separation of

concerns?

We have found that most of the control plane overhead is in the workers, and

hence optimizing the worker performance is our major focus. Our architecture is

worker-centric, and places more performance and load-management responsibility on

the individual workers, instead of a more “top-down” centralized approach favored by

prior work such as Atoll [220] and others [145, 147]. Top-down resource management

requires a consistent global view of the cluster, and is complementary to our work.

Predictive techniques for load-balancing, prefetching, scheduling, function-sizing can

all be effective, but we want to explore the performance characteristics and limits of

reactive control planes that work with unmodified container runtimes.

Ilúvatar’s main components are shown in Figure 5.2. Clients/users invoke functions

using an HTTP or RPC API, with the main operations being register, invoke,

async invoke, and prewarm. Workers also provide load and status information to

the load-balancer. We use stateless load-balancing, by using variants of consistent

hashing with bounded loads (CH-BL), which have been proposed for FaaS recently [114].

This is a locality-aware scheme, which runs functions on the same servers to maximize

108

Regulator Run in

Container

Bypass

?

<latexit sha1_base64="lTOXQt135vek3z08U2QfZukxb+A=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy4r2Ie0Q8lkMm1okhmSjFCGfoUbF4q49XPc+Tem01lo64HA4Zxzyb0nSDjTxnW/ndLa+sbmVnm7srO7t39QPTzq6DhVhLZJzGPVC7CmnEnaNsxw2ksUxSLgtBtMbud+94kqzWL5YKYJ9QUeSRYxgo2VHgfcRkM8ZMNqza27OdAq8QpSgwKtYfVrEMYkFVQawrHWfc9NjJ9hZRjhdFYZpJommEzwiPYtlVhQ7Wf5wjN0ZpUQRbGyTxqUq78nMiy0norAJgU2Y73szcX/vH5qoms/YzJJDZVk8VGUcmRiNL8ehUxRYvjUEkwUs7siMsYKE2M7qtgSvOWTV0nnou5d1hv3jVrzpqijDCdwCufgwRU04Q5a0AYCAp7hFd4c5bw4787HIlpyiplj+APn8we+nZBi</latexit>

λi

Priority Queue

Container

Agent

Function code

Container Pool:
Available and in-use Run function

Load Balancer
(Consistent

Hashing With
Bounded
Loads)

Worker

Fig. 5.2: Ilúvatar has a worker-centric architecture. A per-worker queue helps schedule
functions, and regulate load and overcommitment.

warm starts, and forwards them to other servers only when the server’s load exceeds

some pre-specified load-bound.

Continuing on the worker-centric theme, the worker API is a subset and almost

completely identical to the overall API, and functions can be launched directly

on a worker for single-worker setups and benchmarking, without going through a

load-balancer and adding unnecessary latency. The workers implement various latency-

hiding and burst-mitigation techniques. All functions are launched inside containers,

and dealing with the container layer is a major part of the worker. Each worker

maintains a container pool of initialized containers for facilitating warm starts, and

has an invocation queue for handling dynamic loads. Function characteristics such as

their cold and warm execution times are captured in various data-structures and are

made available using APIs for developing data-driven resource management policies.

An important contribution and component of Ilúvatar is its principled support for

function overcommitment based on its queuing architecture. In many environments,

109

like public FaaS providers, function resources cannot be overcommitted. However, the

actual function resource usage is often significantly less compared to their requested

“size”. This difference is the motivation behind recent “right sizing” work [34,100,124,

157,233], and can significantly improve system utilization. Through its queue-based

architecture, Ilúvatar supports a wide range of overcommitment scenarios, including

no overcommitment, which is absent from OpenWhisk. By default, OpenWhisk does

not overcommit memory, but can overcommit CPUs, which introduces performance

interference and potential SLA violations for functions.

5.2.2 Function Lifecycle

New functions first must be registered, which entails downloading and preparing its

container disk image. The container images are fetched from DockerHub or some other

image repository. Container images are composed of multiple copy-on-write layers,

and we prepare the images by selecting the relevant layers for the operating system

and CPU architecture. The images consist of the user-provided function code and our

agent, which is a simple Python HTTP server that runs in each container. Registered

functions can then be directly invoked, which triggers launching of the function’s

container. The first invocation is usually a cold start, which entails launching the

container image from disk, or from a previous snapshot [43, 239] if available. Each

function container starts the agent which listens for and controls the actual function

code execution. The agent has two simple commands, a GET / endpoint for simple

status checking, and a POST /invoke to run an invocation with some arguments.

When the container is ready, the worker sends an HTTP request to the agent to start

the function code execution. We detect the container’s readiness using an inotify

110

Ingestion &
Queueing

Container
Operations

Agent
Communication

λ Execution Returning

Platform Overhead

0.076 ms 0.159 ms 1.55 ms 0.243 ms

~2 ms

Fig. 5.3: The main components of the Ilúvatar overheads.

callback, which is a faster and more generic mechanism for notification compared to

Docker’s built-in API. Finally, when the function finishes execution, the HTTP call

to the container’s agent returns, and the container is marked as “available” in the

container pool, to be potentially used for future invocations of the same function.

Additionally, Ilúvatar introduces a standard prewarm API call, which starts the

function’s container and the agent inside of it, and adds it to the container pool. This

reduces most of the cold start overhead associated with the container. Prewarming can

both avoid a “thundering herd” of cold starts on worker startup, and be an optimization

in which the control plane anticipates invocations and prepares containers for them.

This allows for a systematic mechanism to implement various recently proposed

predictive prewarm policies [203, 211,219].

Function Latency Breakdown. Throughout Ilúvatar and this chapter, we are

interested in three main performance metrics. The first is the end-to-end latency of

function execution, also called the flow time, shown in Figure 5.3. This in turn has

two main components: the control plane overhead is the latency of Ilúvatar operations,

which are mainly before the start of function execution. The second component is

the function execution time, which is determined by the function code, and the load

111

on the system. The function execution time is our baseline, and we compute the

normalized end-to-end latency by dividing the full latency by the execution time (also

called the stretch).

A more detailed latency breakdown is shown in Table 5.1. The majority of overhead

comes from the communication with the agent which is over HTTP. This is a deliberate

choice, since we wanted to be compatible with existing OpenWhisk function images.

This can be reduced by using faster IPC mechanisms like in Nightcore [139]. However,

these faster communication approaches would reduce compatibility, especially with

functions deployed inside VMs.

For OpenWhisk, a similar latency breakdown shows that a large amount of time

is spent reading/writing to CouchDB (up to half a second), and the rest of the

slowdown occurs in the Invoker (OpenWhisk’s worker) and is primarily due to its

design and implementation. Interestingly, the load-balancer/controller for OpenWhisk

adds less than 3ms of latency even under heavy load, indicating that the worker-level

performance is relatively more important. This further motivates our worker-centric

design and evaluation focus.

5.2.3 Worker Performance Optimizations

To achieve this low latency function execution for heterogeneous and bursty

workloads, Ilúvatar uses two key underlying design principles: resource caching, and

asynchronous handling of function life-cycle events.

5.2.3.1 Resource Caching The cornerstone design goal of Ilúvatar is to reduce

jitter, which we accomplish by removing expensive operations from the function’s

112

Tab. 5.1: Latency of different Ilúvatar worker components for a single warm invocation.

Group Function Name Time (ms)

Ingestion & Queuing

invoke
sync invoke

enqueue invocation
add item to q

0.026
0.013
0.017
0.02

Container Operations

spawn worker
dequeue

acquire container
try lock container

0.029
0.02
0.096
0.014

Agent Communication
prepare invoke
call container

download result

0.154
1.364
0.032

Returning
return container

return results
0.017
0.266

critical path. Instead, we cache and reuse as many function resources as possible, which

minimizes the “hot path” function invocation latency significantly. This principle is

applied in various worker components, which we describe below. A fast Container

Pool Keep-alive and cached HTTP Clients allow for efficient warm start invocations.

Pre-allocating and caching Network Namespaces shortens cold starts—a technique

first used for rapid container provisioning [184];

Container Keep-alive. The primary and exemplary application of resource caching

is in the container keep-alive cache that Ilúvatar workers maintain. The containers

become “warm” when their function has finished execution, and become “available”

for the next invocation of the same function. We maintain a pool of all in-use and

available containers for each registered function. This container cache implements

classic eviction policies such as Least Recently Used (LRU), and size-aware policies

like Greedy-Dual-Size-Frequency, as proposed in FaasCache [113].

Network Namespace Caching. For isolation, each container is provided with a

113

virtual network interface and a network namespace. Through performance profiling,

we’ve found that creating this network namespace can add significant latency to

container cold starts—as much as 100ms. This is due to contention on a single

global lock shared across all network namespaces [184]. To minimze this overhead, we

maintain a pool of pre-created network namespaces that are assigned during container

creation. The isolation is still maintained, since concurrently running containers do

not share the namespace.

HTTP Clients. The worker threads communicate with the in-container agent

for launching the function code. Instead of creating a new HTTP client for every

invocation, we cache a client per container and use connection pooling. This affects

all invocations (even warm starts), and reduces the control-plane overhead latency by

up to 3ms.

5.2.3.2 Async Function Life-Cycle Handling The second key design principle

is to handle various aspects of the function’s lifecycle asynchronously off the critical

path. Ilúvatar achieves this through background worker threads for certain tasks, and

through its Rust implementation which heavily uses asynchronous functions, futures,

and callbacks wherever possible.

Keep-alive eviction. One such aspect is maintaining the function keep-alive cache,

and ensuring that new functions have enough free memory to launch without waiting

on existing containers to be evicted first. Traditionally, eviction decisions would be

made in an online fashion, but picking victims and waiting for their removal creates

high variance in function execution times. Ilúvatar performs container eviction from

the keep-alive pool periodically in the background, off the critical path. This is similar

114

to the Linux kernel page-cache implementation. We maintain a minimum free-memory

buffer for dealing with invocation bursts, and periodically sort the containers list for

eviction based on caching policies from [113].

Function Queuing. An important component of Ilúvatar’s architecture is a per-

worker function queue. New invocations are first put into the queue, and are dispatched

to the container backend by a queue monitoring thread. This allows us to tolerate

bursts of invocations, and regulate the server load.

5.2.4 Container Handling

Ilúvatar uses standard Linux containers for isolating and sandboxing function

execution—a “vanilla” and conventional approach. Several exciting new isolation

mechanisms for cloud functions have been proposed: such as lightweight VMs [33],

unikernels, WASM [218] and other language runtimes [60], etc. Importantly, the

sandboxing affects the cold start overheads, which account for a tiny fraction of

all invocations (usually less than 1%). Our control plane design and performance

optimizations are independent of the sandboxing mechanism, and we address the

orthogonal problem of optimizing the warm starts.

The basic container operations we use are: i) Create a container/sandbox with

specified resource limits and disk image/snapshot, ii) launch a task inside it for the

agent, and iii) destroy the container. Each container is launched with the CPU and

memory resource limits. CPU limits are enforced with cgroup quotas. This limited

API allows Ilúvatar to support multiple container backends.

By default, we use containerd [2], which is popular container library, also used

115

by Docker. The very rich containerization ecosystem presents a large number of

options, and examining their tradeoffs was a major part of Ilúvatar’s design process.

Importantly, the choice of containerization library impacts the cold start times, and

some library operations can take considerable time (100s of ms). High-level container

frameworks like Docker are feature-rich and easy to use, but are typically used for

long-running containers and are not optimized for latency. Docker uses containerd

under the hood, and it provides more fine-grained control and slightly better latency.

Functions require a minimal containerization, and a lot of feature-complexity in these

large containerization libraries can add to latency. For instance, the crun [18] library

which is written in C takes about 150ms to launch a container, whereas containerd

(written in Go) needs 300ms, and Docker needs 400ms.

Using containerd allows us to use the OCI container specification [193], and makes

it easier to support other container runtimes. For instance, we also support the Docker

container backend, which required only a minimal programming effort. Containerd

operates as a separate service, and we use it’s RPC-based API, which contributes to

some latency as well. We contemplated writing our own optimized container runtime

in Rust to avoid the overheads due to inter-process communication, extra process forks

and system calls, and implement other cgroups and namespace optimizations. However,

we ended up going with containerd to keep our control plane small and reusable across

container runtimes. We also wanted to investigate and tackle the challenge of getting

predictable performance out of higher level containerization services that are not part

of the same address space.

Simulation Backend. In addition to containerd and Docker containers, we also

support a “null” container backend which is useful for simulations and evaluating

116

control plane scalability. Because of the scale and variety of FaaS workloads, using

discrete event simulators for developing and evaluating resource management policies

is often necessary. For instance, the recent work on FaaS load balancing [114] uses

such a simulator for evaluating their policies at scale for different subsets of the Azure

workload trace. Usually, the simulation is used to augment and complement the “real”

empirical evaluation of the same policies which are implemented in FaaS frameworks

like OpenWhisk.

However, a major methodological and practical issue is that the policy imple-

mentations, workload generation, and analysis, all need to be duplicated across the

simulator and the real system. This can lead to subtle and large divergences between

the simulation and real environment. Moreover, the simulator cannot capture all the

real-world dynamics and jitter, and can suffer from poor fidelity.

In order to aid researchers, Ilúvatar takes a different approach to simulations, and

provides in-situ simulations. Our “null” container backend does not run any actual

function code, but instead sleeps for the function’s anticipated execution time. The

rest of the control plane operates exactly as with real containers, and we still handle

all other aspects of the function’s lifecycle. This allows us to simulate large systems

and workloads. For evaluating any particular policy, researchers can use the simulator

null-backend to evaluate control-plane overheads, warm-starts, etc., without requiring

a large cluster. Each Ilúvatar worker can “simulate” 100s of cores, since the CPU

resources are only being consumed by the control plane, and not for running actual

functions. Alternatively, a large cluster can be simulated with multiple simulated

workers.

With this approach, there is minimal difference between the simulation and the

117

real system. Thus an experiment can be run in-situ or in-silico, following identical code

paths. The main distinction is that API calls to containerd are replaced with internal

dummy function calls, and function invocations are converted to sleep statements. All

control plane operations, control-flow, logging, resource limits enforcement, etc., are

exactly the same as with the “real” Ilúvatar. This also helps with mocking and testing

new policies.

5.3 Function Invocation Queuing

As a way to regulate and control function execution and worker load, Ilúvatar incor-

porates a per-worker invocation queue architecture. Function invocations go through

this queuing system before reaching the container manager, which either locates the

warm container and runs the function or creates a new container. Each worker manages

its own queue, differentiating our design from OpenWhisk’s shared Kafka queue.

Motivation. This queuing architecture is motivated by three main factors: i) the

bursty nature of the workload, ii) Reducing cold starts due to concurrent invocations,

and iii) to give workers additional mechanisms for controlling their load, implementing

prioritization, etc. Note that once the function passes through the queue, it is

effectively “scheduled” for execution by the OS CPU scheduler. The CPU scheduler

of course has its own throttling and controling mechanisms, such as cgroups and the

various scheduler tuning knobs. The invocation queue thus acts as a kind of a regulator

or a filter before the CPU scheduler, and ideally, “feeds” it the right functions at the

right rates for maximizing throughput and minimizing latency.

Because function workloads are so bursty and heterogeneous, running each function

118

immediately can significantly increase the worker load and result in severe resource

contention and increase function tail latencies. The queue also helps as an explicit

back-pressure mechanism for load-balancing, admission control, and elastic scaling.

The queue length is used for accurately determining the true load on the worker,

which is a vital input to consistent hashing with bounded loads [114]. This reduces

the staleness and noise of using system load average as the load indicator, and makes

load balancing more robust.

Queuing invocations also allows us to reduce cold starts. While repeated function

invocations are good and increase warm starts, concurrent invocations of the same

function results in cold starts for all the concurrent invocations, since each invocation

needs to be run in its own container. This is also the “spawn start” [200], which causes

severe latency increase of 10s of seconds in public FaaS. If there are n concurrent

invocations that arrive at the same time, then the n concurrent cold starts can

significantly increase the system load and affect latency of other functions. Instead,

by queuing and throttling the functions, we can wait for the invocation to finish, and

then use the warm container for the next function in this “herd”, and so on and so

forth.

5.3.1 Queue Architecture

Ilúvatar’s queue architecture is shown in Figure 5.2. We have three main compo-

nents. From right to left, first, we have a concurrency regulator (or just regulator),

which enforces the concurrency limit: the upper-bound on the number of concur-

rently running functions. This lets functions execute “on cpu” without timesharing,

and effectively determines the overcommitment ratio. Higher concurrency limits (more

119

than the number of CPUs) means more CPU overcommitment. Note that even with

overcommitment, the cgroup quotas still provide proportional allocation (thus a 2

CPU container will still get twice the CPU cycles compared to a 1 CPU container). In

addition to concurrency, other factors can also be used to regulate the queue discharge

rate. The regulator can be used to run functions only when sufficient resources (such

as CPU bandwidth, warm containers, or even accelerators like GPUs) are available.

Ilúvatar can be deployed with a fixed concurrency limit based on the usage

requirements, or use its dynamic concurrency limit mode. In the dynamic mode,

we use a simple TCP-like AIMD [261] policy which increases the concurrency limit

until we hit congestion, which in our case is hit if the system load average increases

above some specified threshold. Other metrics are possible: looking at the increase

in execution time (i.e., stretch) of the functions could also be used as a congestion

metric. The concurrency limit affects the tail-latency, and more advanced policies can

be implemented.

The second component is a queuing discipline. In the simplest case, we can

use simple FCFS, and process functions in arrival order. However, because functions

are heterogeneous, this is not always the most appropriate. Instead, we can use the

past function execution characteristics such as their cold/warm running times for

size-aware queuing such as shortest job first (SJF). We elaborate more on the queuing

policies in the next subsection.

Finally, we note that queuing may increase the waiting time for small functions. We

thus have a queue bypass mechanism, which allows certain functions to bypass the

queue and immediately and directly run on the CPU. Bypass policies take the function

120

running time and the current system state as input. Currently, we implement a short-

function bypass, where functions smaller than a certain duration are immediately

scheduled, as long as the system is under a load-average limit. More effective bypass

policies can also consider reinforcement learning approaches, since the action space is

simple (bypass or enqueue), and the system state is well defined (functions running

and in-queue, etc.).

5.3.2 Queuing Policies

We implement multiple queue policies which leverage the repeated invocations of

functions and use their learned execution characteristics to determining each function’s

priority. To accomplish this, we maintain per-function characteristics such as cold

time, warm time, and inter-arrival-time (IAT). We maintain a priority queue sorted

by the function priorities, which are computed using their characteristics like arrival

and execution time.

FIFO is simplest and invocations are just sorted by their arrival time. For

prioritizing small functions, we leverage our bypass mechanism, where the short

functions can skip the queue and be scheduled directly on the CPU. Optimizing

queuing policies for heterogeneous functions is challenging, and is an NP complete

problem even in the offline case [56].

For improving throughput, we use shortest job first (SJF), which helps reduce the

waiting time for short functions, but can lead to starvation for longer functions if the

queue never drains. As a tradeoff between function duration and arrival, Ilúvatar by

default tries to minimize the “effective deadline” of a function, which is equal to the

sum of its arrival time and (expected) execution time. This earliest effective deadline

121

first (EEDF) approach balances both short functions and starvation. In both SJF and

EEDF, an invocation’s execution time is determined by its (moving window) warm

time. New/unseen functions have their times set to zero, to prioritize their execution.

If we expect to find available containers for a function, we use its (moving window)

warm time as the execution time in both SJF and EEDF. Otherwise, we use its cold

time—this also helps in reducing the concurrent cold starts, since the expected cold

invocations of some functions in a burst separates them in the queue, and reduces

the number of concurrently executing identical functions. This spreading of function

invocations over time increases the warm starts and overall performance. Finally,

the RARE policy prioritizes the most unexpected functions (i.e., functions with the

highest IAT).

5.4 Implementation

Ilúvatar is implemented in Rust in about 13,000 lines of code, and was made

open-source and easy to use. Its low latency and lack of jitter are attributable to

the various low-level profile-guided performance optimizations we have implemented

during the course of its development and testing. Function handling and container

management in the worker make up a majority of the implementation footprint and

focus. Ours is a heavily asynchronous implementation using the tokio library in

Rust, and various function lifecycle events spawn new userspace threads and trigger

callbacks. The major data structure shared by the various worker threads is the

container pool, which is implemented using the dashmap crate, which is a concurrent

associative hashmap— this provides noticeable latency improvements compared to

a mutex or read-write lock. Conversely, we still use a mutex for the queue, since we

122

found minimal performance degradation compared to a no-queue architecture during

profiling. These, and many other small optimizations, keep the Ilúvatar resource

consumption small: even under a heavy and sustained load that saturates a 48 CPU

server, the worker process uses less than 20% of a single CPU core.

5.4.1 Support for FaaS research

One of our major design goals is for a reliable and extensible control plane for

performance-focused FaaS research. We now describe some of the Ilúvatar features

and our experiences in extending it.

Performance Metrics. We keep track of all internal and external function metrics

(such as their cold/warm execution time histories, inter arrival times, memory foot-

prints, etc.) and provide them to all components of the control plane, and also to

external services. One of Ilúvatar’s implementation goals was to reduce the reliance

on external services for system monitoring etc. We thus track key system metrics like

CPU usage, load averages, and even CPU performance counters and system energy

usage using RAPL and external power meters. These metrics are collected using

async worker threads, and provide a single consistent view of the system performance.

Additionally, we also use and provide Rust-function tracing for fine-grained perfor-

mance logging and analysis. We use the tracing crate to instrument the passage of

invocations through the control plane components, and obtain detailed function level

timing information, which is used for identifying control plane and container-layer

bottlenecks.

Adding New Policies and Backends. Using function and system metrics allows for

easy development of data and statistical learning based resource management policies

123

to be implemented. Our baseline policy implementations for keep-alive eviction,

queuing, load-balancing, are all easily extensible using Rust traits, polymorphism, and

code generation. In our experience, adding new policies is relatively straight-forward,

even for new-comers. For example, all the priority-based queuing policies (SJF, EEDF,

RARE, etc.) were implemented by extending the base FCFS policy. Implementing

and testing these policies took less than a few dozen lines and about four hours for a

graduate student unfamiliar with the code-base.

The default container runtime backend is containerd, but the interface is small,

and supporting new backends is relatively easy. We added Docker support in about

400 lines and one person-day of development effort.

Load-generation and Testing. In the spirit of providing a full-featured system

for FaaS experimentation, we have developed a load-generation framework. It can do

closed and open loop load generation, and be parameterized by the number and mixture

of functions, their IAT distributions, etc. The testing framework can use functions from

FaaS suites like FunctionBench [153], or custom sized functions that run lookbusy [63]

for generating specific CPU and memory load. The open-loop generation produces a

timeseries of function invocations, which is helpful for repeatable experiments. The

functions’ IAT distributions can be exponential, or be derived from empirical FaaS

traces like the Azure trace [211].

For the Azure trace, we start by randomly sampling functions and computing the

CDF of their IATs. We compute the expected load level in the system using Little’s

law, by finding the expected number of concurrent invocations for each function and

adding them for all functions. This expected load can be significantly different from

the capabilities of the system under testing (for example, 100 concurrent functions

124

will overload a 12 core system). Therefore, we can scale the individual function IAT

CDFs to find a suitable load. This also allows us to change the relative popularities

of individual functions, and conduct fine-grained sensitivity experimentation (like

examining system performance when the popularity of one single function changes,

etc.). We can generate larger traces by layering, and merging the traces from multiple

smaller workloads.

For synthetic functions (using lookbusy), we use their distribution of running times

and memory consumption when generating the workload. When using real functions

from a benchmark-suite like FunctionBench, for each randomly sampled function, we

use its average execution time (from the full trace), and assign it the closest function

in the suite. For example, if the average running time of a candidate function in the

Azure trace is 8 seconds, we represent it using the ML-training function, which has

the closest running time of 6 seconds.

5.5 Experimental Evaluation

We have extensively tested Ilúvatar’s performance characteristics throughout its

development. Here, we present a limited set of its key performance attributes and

focus on new insights into FaaS performance. All our experiments are conducted

on a 48 core Intel Xeon platinum 8160 CPU, and we restrict the worker to 32 GB

memory, running Ubuntu 20.04 using Rust version 1.67.0 and Tokio library version

1.19.2. We are interested in evaluating latency overheads and Ilúvatar’s suitability

as a low-jitter research control plane. This evaluation focuses exclusively on the

performance of the worker, where we think most per-invocation latency improvement

opportunities exist. Many effective load-balancing policies have been published, but

125

12 4 8 16 32 4648
Concurrent Invocations

0

200

400

600
Co

nt
ro

l P
la

ne
 O

ve
rh

ea
d

(m
s)

OpenWhisk 50%-ile
OpenWhisk 99%-ile
Ilúvatar 50%-ile
Ilúvatar 99%-ile

Fig. 5.4: The latency overhead of the control plane, as the number of concurrent
invocations increases. OpenWhisk overhead is significant and has high
variance, resulting in high tail latency. Ilúvatar reduces this overhead by
100x.

their impact on latency is limited to balancing decision time and warm start ratio.

Our stateless controller’s overhead is consistent at less than 0.5ms, and we can thus

ignore its latency contribution, for ease of exposition. Our CH-BL based load-balancer

maximizes locality and provides 99% warm starts, and we focus on single-worker

performance to remove unnecessary confounding factors.

5.5.1 Control Plane and Function Performance

In this subsection, we focus on the latency overheads of Ilúvatar under different

workloads and configurations. For these experiments, we do not use any queuing, use

a single worker, and focus on the most basic Ilúvatar configuration.

We start by examining the control plane overheads under a closed-loop load for 30

minutes generated by different number of client threads. The control plane overhead

CDF for the AES function is shown in Figure 5.4. With 48 concurrent client threads,

126

all the CPUs are fully utilized by function execution. Even in this saturated case, the

90 percentile overhead is less than 20ms. Just below this saturation limit, with 46

threads, the 90 percentile overhead drops to less than 10ms, and the average is less

than 3ms.

We now provide a more detailed breakdown of the function latency. In Figure 5.5,

we look at the end to end (E2E) function latency (i.e., flow time) and execution time of

different representative functions under different loads. The flow time is impacted by

the control plane overhead and the function code execution time. Both these factors

are affected by the system load, which in turn is affected by the concurrency level.

The difference between the E2E and the function execution time is the control plane

overhead, which is small for all functions and at all load levels.

Interestingly, a significant source of latency variance is the function execution time

itself. For the small, CPU-intensive PyAES function (Figure 5.5a), the inter-quartile-

range is 60ms, which is 20% the average execution time. Both the execution time (and

hence the E2E latency) and the variance also increases with the system load. This

variance is also determined by the non-determinism in the function code. For instance,

the JSON function (Figure 5.5b) parses a random json file on every invocation, and

thus has a higher natural variance in its execution time. Finally, the video processing

function is long and CPU intensive: it downloads and converts a video to grayscale.

This magnifies the CPU contention, and the function latency increases from 6 to 9

seconds under heavy load.

The notable increase in execution time for all three functions is a result of high

CPU cache miss percentage and a reduction in the instructions per cycle (IPC). We

also observed poor cache locality with an increasing number of CPU cores. When the

127

1 2 4 8 16 32 46 48
Client count

225

250

275

300

325

350

Ti
m

e
(m

s)

E2E Time
Exec Time

(a) PyAES

1 2 4 8 16 32 46 48
Client count

0

250

500

750

1000

1250

Ti
m

e
(m

s)

E2E Time
Exec Time

(b) JSON

1 2 4 8 16 32 46 48
Client count

6000

8000

10000

Ti
m

e
(m

s)

E2E Time
Exec Time

(c) Video

Fig. 5.5: End-to-end latency and execution times for different functions as we increase
the concurrency levels.

128

w
e
b

d
d

flo
a
t

g
z
ip

h
e
llo

js
o
n

lin
_
p
a
c
k

A
E

S

c
n
n

im
a
g
e

m
l_

tra
in

v
id

e
o

1.0

1.5

2.0

2.5

E
2
E

 C
o
ld

 T
im

e
 (

s
e
c
)

Docker Containerd Ilúvatar

5.0

7.5

10.0

12.5

15.0

17.5

Fig. 5.6: Most functions benefit from using a lower-level containerization and OS
object caching on cold starts.

same workload was run on half the number of CPUs (by disabling the rest of the CPU

cores), the cache miss percentage significantly dropped (by more than 50%), along

with a proportionate reduction in the latency variance. This highlights and emphasizes

the deeper architectural challenges of FaaS, which were also shown by [209].

Result: Ilúvatar overheads are small even under heavy load. Function code non-

determinism and system load have a higher impact on the function execution times.

Cold starts. So far, we have focused on warm-start performance which dominates

function workloads. Ilúvatar also incorporates a few optimizations for cold starts.

Specifically, we are interested in quantifying the impact of the different container

backends (containerd and Docker), and the network namespace caching optimizations.

The end to end cold times for various functions are shown in Figure 5.6: this includes

both container startup time and function initialization overheads. In general, smaller

functions face a larger impact due to the cold starts, since it represents a higher

129

percentage of their total flow time.

For small functions (left axis of the figure), using containerd (without network

namespace caching) reduces the cold start by more than 40%, indicating a clear

advantage of using a lighter container runtime. Introducing the namespace caching

further reduces the cold start times by 15% compared to unoptimized containerd which

creates a new network namespace for each new container. After using the namespace

cache, each function invocation sees upwards of 100ms improvement in their cold start

time. The effects also hold for larger functions (right axis of Figure 5.6), where Docker

increases both the average and variance of the latency.

5.5.2 Queuing Performance

Having seen Ilúvatar performance in closed-loop micro-benchmarks, we now in-

vestigate the impact of its various queuing components and policies. We use an

open-loop load-generator, with a random selection of 21 functions from the Azure

traces, and pair them with different functions based on their closest running times.

This “stationary” workload has an average 40 requests per second for 30 minutes.

This represents an extremely heterogeneous workload in terms of function durations

and IATs. Additionally, we also show results from a “bursty” workload generated

in the same way, but with one function generating a burst of 18 requests per second

for one minute. In this open-loop testing, we prewarm the function containers to

prevent excessive cold starts immediately at the start of the workload. The number

of containers to prewarm for each function is determined using Little’s law by using

their average rates and execution times.

Metrics. We use multiple performance metrics to understand and compare different

130

16 18 20 24 28 32 ∞
Concurrency Limit

0

2

4

6

W
te

d
 E

2
E

 l
a
te

n
c
y Overhead

Code Execution

No Queue

(a) Overcommit

FCFS SJF
EEDF

0

10

20

30

E
2
E

 l
a
te

n
c
y

(b) Distribution of function latencies

web dd gzip
image json

ml_train

0

10

20

30

E
2
E

 l
a
te

n
c
y

FCFS

SJF

EEDF

(c) Latency breakdown

Fig. 5.7: Queuing performance on the stationary Azure workload. Size-based policies
can provide significant latency benefits.

131

10 15 20 25 30 35 40 45 50
 Active Cores

1

2

3

4

5

6

W
te

d
 E

2
E

 l
a
te

n
c
y

Fig. 5.8: The per-invocation function latencies for different system sizes (# CPUs).
We see a sharp inflection point at 16 CPUs, and use that in our queuing
evaluation.

policies. Since functions can differ in execution time, we always normalize their

total latency (flow time) by their execution time in an unloaded system. As shown

in the previous figures 5.5, even with 1 closed-loop thread, the execution time has

variance. For normalization, we use the average execution time with 1 thread for all

the functions. Second, function popularities can also vary widely. We thus compute

the weighted latency, where each function’s normalized latency is weighted by the

number of its invocations in the trace. Thus, the weighted latency represents the

latency per-invocation.

Saturation Testing. We are primarily interested in how the queuing impacts

the waiting time (which is part of the control plane overhead), and the function

performance. The analysis of queuing is interesting only in saturated scenarios, where

there is enough extra load on the system and not all invocations can immediately

run on the CPU. We find this saturation point by weak scaling, and decreasing the

number of CPU cores available to Ilúvatar (by disabling CPU cores using hot-unplug).

132

The weighted and normalized latencies for different number of CPUs is shown in

Figure 5.8, which shows the performance without queuing. We see that for our baseline

trace, increasing the number of available CPU cores has diminishing returns: the

per-invocation latency doesnt benefit when CPUs are increased from 18 to 48. However,

we also see a sharp inflection point at 16 cores: decreasing the size to 14 cores results

in a very high, almost 6× slowdown. At 16 cores, our workload saturates the system,

and we use this system configuration for all our queuing analysis. We note that the

alternative is to scale the workload up and run on on all 48 cores. However, as we

have shown previously through Figure 5.5, the poor hardware locality results in higher

variance in the function execution times, and introduces more performance variance.

This variance often masks the control plane jitter, which is of more interest to us.

Impact of Overcommitment. Many frameworks like OpenWhisk inadvertently

overcommit CPUs by running more functions than available CPU cores. Ilúvatar can

control the degree of overcommitment through its concurrency limit queue regulator.

Figure 5.7a shows the effect of this overcommitment, when the EEDF (earliest effective

deadline) queue policy is used. The worker is limited to CPU cores, so higher

concurrency limits represent different degrees of overcommitment. As the concurrency

limit is increased, we see a reduction in the queuing time (which is a major part of

the control plane overhead). For instance, the queuing overhead is negligible when

overcommitment level is 2 (i.e., 32 concurrency limit). However we can see a tradeoff:

the increased concurrency risks performance interference, and the code execution time

also slightly increases (by 4%). For comparison and as a baseline, we also show the

“no queue” configuration which is pure processor sharing and there is no limit on CPU

overcommitment. Queuing also reduces cold starts due to concurrent invocations.

133

16 18 20 24 28 32 ∞
Concurrency Limit

0

2

4

6

W
te

d
 E

2
E

 l
a
te

n
c
y Overhead

Code Execution

No Queue

(a) Overcommit

FCFS SJF
EEDF

2.5

5.0

7.5

10.0

E
2
E

 l
a
te

n
c
y

(b) Distribution of function latencies

web dd gzip
image json

ml_train

2.5

5.0

7.5

10.0

E
2
E

 l
a
te

n
c
y

FCFS

SJF

EEDF

(c) Latency Breakdown

Fig. 5.9: Small and bursty functions can get disproportionately impacted due to
queuing. A little overcommitment can go a long way to reduce latency.

134

Without queuing, the number of cold starts increased by more than 3×.

For the bursty workload, the impact of overcommitment is even more drastic, as

shown in Figure 5.9a. A slight increase in concurrency limit can reduce the weighted

latency by more than 3×, indicating that overcommitment is more effective for burstier

workloads. Interestingly, the latency improves by 20% with queuing as compared to

the “infinite overcommitment” no queuing case. This is due to the increase in function

execution time due to uncontrolled CPU contention and interference, which the queue

helps ameliorate.

Result: CPU overcommitment can reduce queuing times, but come with risk of

increased performance interference. Ilúvatar’s queue design provides a new effective

“knob” for managing this tradeoff.

Queuing Policies and Fairness. Next, we look at the performance impact of

the different queuing policies themselves. We are interested in the impact on the

latencies of the different functions. Figure 5.7b shows the normalized latencies of

different functions with the different queuing policies. This scenario has a significant

amount of queuing: the concurrency limit is set to 16 (the number of CPUs). The

function-size aware policies like SJF and EEDF provide much lower latency compared

to the standard FCFS: the average latency is reduced by more than 2− 3×.

A breakdown of the latency of individual functions in Figure 5.7c helps understand

this stark performance difference. The queuing in FCFS increases the total time of the

extremely small “web” function (13ms running time), which increases its latency by

30×. The small-function prioritization by SJF and EEDF reduces this significantly.

The impact of queuing for the bursty workload is even more interesting, as shown

135

in Figure 5.9b. EEDF’s average latency is 2× higher than simple FCFS, while SJF is

60% lower than FCFS. Investigating the per-function breakdown again in Figure 5.9c

again points to the contribution of the small web function, which is also the bursty

function. The bursty invocations trigger the cold start mitigation, which deprioritizes

them, and increases the queuing time, which disproportionately impacts the small

functions.

Result: Incorporating both function size and arrival times can improve function

latency and fairness significantly. Very small functions see a higher % increase due to

queuing.

Ilúvatar vs. Little’s law vs. Simulation. Finally, we want to show Ilúvatar’s

suitability for performance modeling, capacity planning, and as a research control

plane for developing and evaluating FaaS resource management policies. We compare

the number of concurrent function invocations and queue length (EEDF) with the

expected load according to Little’s law, computed using average arrival rates and

execution times of all functions of our stationary trace. We see that the real system

metrics, even with all the inherent burstiness in the Azure trace, and the function

execution and control plane jitter, are on average very close to the Little’s law estimate.

This strongly indicates that our performance is indeed predictable even with highly

heterogeneous workloads.

Additionally, Figure 5.10 also shows the output of our “simulation” container

backend described in Section 5.2.4. This backend doesn’t run actual function code, but

exercises all other control plane aspects. We use constant average function execution

times (without accounting for variance and stochasticity) for all invocations. Even

though this simulation setup doesn’t capture real-world variability and the impact

136

0 1 2 3 4 5
Elapsed time (min)

0

20

40

60

In
vo

ca
tio

ns

Sim Queue
Sim Running
Real Queue

Real Running
Little's Law

Fig. 5.10: Ilúvatar running in-silico closely models the in-situ performance. Making it
a viable exploration opportunity supplementing real experiments.

of server load on function performance, we see that the simulation is also fairly

closely aligned with the real experiment output. This shows that Ilúvatar’s integrated

simulation framework captures sufficient system dynamics and provides high-fidelity

simulations. This can significantly accelerate FaaS research, especially advances in

reinforcement learning based scheduling, which requires high-quality simulations for

learning policies.

5.6 Related Work

Alongside the closed-source FaaS control planes from the major cloud providers, a

variety of other FaaS control planes exist. Open-source production faas OpenWhisk [17],

OpenFaaS [21], nuclio [22], kNative [23], and funcX [66]. Others were made for with

targeted research goals in mind [130,139,184,220,238].

Ilúvatar occupies a somewhat unique spot in the crowded FaaS landscape because

of its focus on warm starts and some key constraints in our system design. Techniques

137

for reducing cold start overheads, like snapshots, language isolation, unikernels, all sit

“below” the control plane, and can be complemented with fast control planes. At the

other extreme end, the predictable nature of serverless workloads has been used to

great effect for predictive load-balancing, prefetching, sizing, etc. Ilúvatar is mostly

reactive and is worker-centric, and tries to make minimal assumptions about workload

predictability and focuses on more general optimizations that can work for arbitrary

workload patterns.

FaaS Control Planes. SOCK [184] is closely related to Ilúvatar, and makes similar

observations about network namespace overheads, and introduced storage and cgroup

optimizations for serverless optimized containers. SOCK is based on OpenLambda [130]

and achieves great cold start performance with Zygotes that are cloned into new

containers. These optimizations to the container runtime are also applicable to

Ilúvatar and are complementary. Using the standard containerd interface allows us to

use multiple current and future container backends, and is a deliberate tradeoff.

Nightcore [139] is an integrated control plane and runtime system for low-latency

microsecond-scale microservices. It essentially implements containerized RPC, and

uses fast message passing between the control plane and the agent. Its special container

runtime precludes generic “black box” functions, and it provides a weaker isolation

model by running functions concurrently within the same container. In the microservice

context, container management and scheduling, dealing with heterogenenous functions,

and other challenges are not relevant.

Atoll [220] is a fast and highly scalable control plane, and hugely benefits from

pre-allocation and prediction. It has a two level load-balancing setup with functions

scheduled to a cluster group which then places them on a worker. Ilúvatar’s design

138

and contributions are orthogonal to Atoll’s more top-down and predictive approach,

and we focus on the “low-level” worker problems.

Open-source control planes like OpenWhisk, OpenFaaS [21], nuclio [22], and

kNative [23], are widely used to provide functions as a service. They tackle the

competing demands of modularity and features, along with supporting function

executions in generic environments. Many FaaS systems use Kubernetes as the resource

and container management layer, and its complexity and high latency further inhibits

deep understanding and optimizations. OpenWhisk’s cold and warm performance

has been analyzed in many prior works such as [196] and also as part of other

systems [39,113,114,208]. OpenWhisk scheduling design and improvements can be

found in [114,150]. Tighter latency requirements exist when deploying functions at

the edge, and OpenWhisk’s use on lower powered devices presents even more latency

troubles [126, 186, 189, 244]. Interestingly, public cloud latencies are also significant, of

the order of 50 ms [237], hinting that the problems also extend their control planes.

Function Scheduling. Concurrent to our efforts, queuing of function invocations

has been proposed in [282], which implements various size-aware policies like SJF.

Surprisingly, and perhaps due to OpenWhisk overheads, their function slowdowns are

extremely high: of more than 10, 000×. An earlier theoretical queuing analysis of

flow and stretch metrics is also presented in [281]. In contrast to Ilúvatar’s worker-

centric design, a centralized core-level allocation design is presented in [145]. In FaaS

clusters, the tradeoffs in load balancing and early/late binding are evaluated in [147].

Locality [114] and ML-based [264] techniques for FaaS load-balancing take advantage

of the high temporal locality and predictability of the FaaS workloads. Our effort is

more focused on reactive systems, and adding predictive allocation will only improve

139

it.

OS scheduler improvements can also improve FaaS workloads [109]. Regulating

Linux CPU cgroups shares is also effective in overcommitment [229]. Evaluating the

effectiveness of these scheduling improvements when juxtaposed with queuing will be

interesting. Scheduling function workflows and DAGs are a growing area [168,217,280],

and we focus on single-invocation optimizations.

Ilúvatar a fast, modular, and extensible FaaS control plane made open source

capable of running on heterogeneous and edge hardware. It is implemented in Rust in

about 13,000 lines of code, and introduces only 3ms of latency overhead under a wide

range of loads. Its worker-centric architecture, resource caching based design, queue-

based overcommitment and scheduling, and careful asynchronous implementation, all

contribute to low latency and jitter.

140

6. Opportunistic GPU Acceleration for Serverless Functions

Hardware accelerators like GPUs are now ubiquitous in data centers and edge

computing, but are not fully supported by major FaaS platforms. Many popular

and emerging FaaS applications such as machine learning and scientific computing

can benefit from GPU acceleration. However, FaaS frameworks are not capable of

providing this acceleration because of the design mismatch between the GPU usage

and FaaS programming model, which requires virtualization and sandboxing of each

function, and must support highly dynamic and heterogeneous functions.

This chapter presents the design and implementation of a FaaS system for hetero-

geneous hardware, which provides hybrid computing capabilities for general, black-box

functions. We show how data and code locality determines GPU function performance,

and translate principles from I/O scheduling such as fair queuing and anticipatory

scheduling, to GPUs. On real-world FaaS workloads, our fair-queuing scheduling can

reduce latency by more than 5× compared to FCFS and batch-oriented scheduling.

Our scheduler-integrated memory movement optimizations significantly reduce GPU

cold-starts, reducing function latency by more than two orders of magnitude, allowing

FaaS operators to provide opportunistic acceleration and leverage antiquated GPUs.

141

Tab. 6.1: Latencies (in seconds) for GPU and CPU Warm and Cold functions.

Function GPU [W] CPU [W] GPU [C]
Imagenet [ML] 2.253 5.477 8.581
Roberta [ML] 0.268 5.162 16.374
Ffmpeg [Video] 4.483 32.997 12.044
FFT [HPC] 0.897 11.584 2.648
Isoneural [HPC] 0.026 0.501 2.586
Lud [Rodinia] 2.050 70.915 2.125
Myocyte [Rodinia] 2.784 39.277 2.145
Needle [Rodinia] 1.979 144.639 2.292
Pathfinder [Rodinia] 1.472 134.358 1.997

6.1 Background and Motivation

6.1.1 Why GPU Acceleration for Functions

Many applications that have adopted FaaS for its on-demand scaling also benefit

from GPU acceleration, as shown by Table 6.1, where we compare the execution

times of functions using an NVidia V100 GPU and an Intel Xeon Gold 3.2 GHz CPU.

CPU functions are allocated one CPU core, and GPU functions can use the entire

accelerator. Machine learning inference tasks such as Imagenet and Roberta see a 3x

and 20x reduction in latency compared to a warm CPU container. Video encoding

via ffmpeg, which is one of the most popular functions on AWS Lambda [5], can

also leverage specialized hardware found in most GPUs for a 7x speedup. Scientific

computing has started to be used in FaaS [141,213,221,252], and also benefits from

GPU acceleration for its common primitives such as FFT.

Thus a large class of FaaS workloads are potentially amenable to GPU acceleration.

The serverless abstraction allows decoupling of computation from its location, and

prior work has investigated the use of remote disaggregated GPUs for FaaS [107, 180],

142

and providing acceleration as a service [94, 241]. Serverless functions in public cloud

with enabled GPUs have started to appear [1, 8], but are far from ideal. These use

GPU-passthrough techniques [27], which statically allocate hardware and have low

utilization, and sometimes one must even self-host the hardware [8].

6.1.2 GPU Programming Model

Applications cannot usually manipulate GPUs directly, and must use a

manufacturer-provided driver for all operations. Host programs launch kernels which

execute a code block with given memory inputs and a number of parallel threads to use.

Multiple kernels can be launched concurrently, with the device handling scheduling

of kernels and threads internally. Kernels run until completion, with execution time

varying widely depending on the number of threads, input size, and complexity of the

code being run. Traditionally, programs manually move data between the host and

device (using cuMemAlloc for instance). Virtualizing GPU memory (by using CUDA’s

Unified Virtual Memory (UVM) [11]) allows memory overcommittment, which is

important for supporting high degrees of multiplexing.

For multiplexing functions on GPUs, the naive approach entails fully assigning the

GPU to a function. Because functions are short-lived (at most a few minutes), we

can use the GPU in an FCFS run-to-completion model. However, this leads to poor

GPU utilization since functions are often small and will not use all GPU resources,

and also highly detrimental for function latency due to cold-starts, as we explain in

the next section. A typical FaaS server runs 10–50 functions concurrently, and thus

even if a small fraction of them can benefit from GPU acceleration, an immediate

need arises for multiplexing the GPU to run multiple functions concurrently. However,

143

GPUs have conventionally been designed for high throughput computation for a single

long-running application, which is reflected in their hardware architecture and software

stacks. The performance-first focus has also resulted in many cross-layer optimizations

which make multiplexing and virtualization challenging.

6.2 Design Requirements and Key Challenges

Our work considers discrete and integrated GPUs, and our task is to provide

opportunistic GPU acceleration to functions that benefit from it. We assume a classic,

non-disaggregated hardware platform where the GPU functions can run locally. Due to

the surge of ML workloads, discrete and integrated GPUs are a common feature in data

center and even edge clusters. For example, the popular Nvidia Jetson Orin platform

provides more than 60% of its compute capabilities (FLOPS) in the integrated GPU.

Since FaaS is the common abstraction for supporting a wide range of applications,

we seek a general-purpose black-box solution which supports arbitrary functions on

heterogeneous clusters, and preserves existing resource isolation guarantees. This

requires us to support different GPU usage patterns, and prevent the use of application-

specific performance optimizations (such as for ML inference). For the FaaS hardware,

we make minimal assumptions in terms of feature availability, and assume that the

underlying cluster is a mix of servers with different GPU types, and support both data

center and edge computing devices. Given all these requirements, the performance

objective is to increase server utilization by running functions on GPUs, and reducing

the overall function latency of FaaS workloads. The above constraints imposed by

black-box FaaS workloads and GPU multiplexing also restrict the space of mechanisms

and optimizations, which lead to the challenges described below.

144

0.0 0.2 0.4 0.6 0.8

CP
U

Co
nt

ai
ne

r

11.8 12.0 12.2 12.4

0 1 2
Time (sec)

GP
U

Co
nt

ai
ne

r

14.6 14.8 15.0 15.2 15.4

containerd
runc

Nvidia hook
Docker

User code

Fig. 6.1: Timeline of cold-starts of CPU (top) and GPU (bottom) function containers
running TensorFlow inference code. GPU initialization and code dependen-
cies increase latency by three seconds.

6.2.1 Cold-starts for GPU Containers

Cold-starts due to sandbox creation and initialization are a well known performance

problem for serverless functions [95,165,170,176]. We find that such cold starts are

severely exacerbated by GPU containers, increasing latency by 1.1− 75× (Table 6.1).

A breakdown and comparison of these overheads for the ML inference function (using

TensorFlow) is shown in Figure 6.1. For the GPU container (bottom figure), the

Nvidia hook library adds more than 1.5 seconds of delay. User function code loads

additional GPU libraries and dependencies, and its startup requires 1.5 additional

seconds.

145

6.2.2 Tradeoffs in Locality, Throughput, and Fairness

A common approach to alleviate cold starts is to keep the container warm [113] in

memory. This is also applicable for GPU containers, but with additional challenges.

First, a warm container holds GPU memory which is much more limited (e.g., the V100

has 16 GB VRAM), which reduces keep-alive’s effectiveness [113], and reduces the

number of containers able to be kept warm. Additionally, the number of concurrently

executing functions should also be kept low to mitigate performance interference,

which can be excessive from both compute [190, 258] and data movement between

host and device [131, 266]. This reduction in concurrency increases queue waiting

times. Finally, since function workloads are highly heterogeneous and dynamic, we

must select the “active” functions carefully so as to balance fairness and throughput.

In other contexts, application switching costs have been reduced through batching.

For example, an ML inference task can be given multiple inputs simultaneously

as a batch—significantly improving throughput and utilization [37, 38, 260]. Such

specialized and white-box solutions eschew isolation by making assumptions about the

workload, such as the ability to modify the function code and input/output processing.

For a general FaaS service, we need to provide locality improvements using a black-box

approach.

Maximizing for locality entails large batches, which increases latency for both the

batched function and also the other functions due to monopolization of GPU resources.

For heterogeneous and dynamic FaaS workloads, batching policies are also significantly

more challenging outside more specialized workloads like inference-as-a-service. For

example, popular functions see 100× the average number of invocations, which can

146

cause the rest of the long tail of functions to have exacerbated waiting times in the

queue, leading to unfairness. Thus, while locality is useful for performance, it may

lead to unfairness.

6.2.3 GPU Multiplexing Mechanisms

While many hardware- and software-level virtualization and multiplexing solutions

exist, they are ill-suited for the highly dynamic and heterogeneous containerized

function workloads. The conventional approach is to dispatch multiple GPU compute

kernels (corresponding to different functions) concurrently, and let the GPU driver and

hardware manage the sharing of GPU compute cores and memory. The GPU driver

itself accepts individual compute kernels from applications and has a device-internal

scheduler which maps them to available compute blocks as they arrive. This is one of

the main mechanisms behind classic GPU virtualization work [96,131,266], but comes

with significant performance overheads [267]. These GPU virtualization approaches

duplicate application state in host memory, and allocate/de-allocate all resources

when switching between applications.

Application-specific optimizations for scheduling and multiplexing of GPU kernels

can be performed at several levels of the GPU software-hardware stack. Kernel

schedulers for domain-specific optimizations [70,120,154,225] have been designed to

coordinate kernels from several applications to improve on device scheduler perfor-

mance. These operate only on compute kernels to prevent contention and assume

active concurrent workloads are coordinated elsewhere to not exceed the device mem-

ory. Application-optimized and integrated scheduling solutions have recently been

developed [181, 187, 225], which interpose on the application’s kernel launches. For

147

example, the structure of ML inference applications can be used for injecting kernel

preemption code into the applications via TVM transformations [127] for decreasing

head of line blocking and improving GPU utilization.

GPU compute cores and memory can also be spatially partitioned across clients/k-

ernels using more modern GPU virtualization functionality. Nvidia MIG [25] (Multi-

Instance GPU) pre-partitions device resources, and one or more of these virtualized

GPU partitions can be assigned to a VM or container via direct device assignment.

However, the slices are of pre-determined sizes, making them ill-suited to fine-grained

and dynamic workloads [161]. Similarly, Multi-Process Service [24] (MPS) allows

multiple processes to make share the device concurrently and has been proposed for

FaaS [120]. An MPS server and the hardware device perform resource partitioning

based on configuration at application start time. MPS is explicitly designed to let

cooperative processes share GPU resources, and documentation specifies that it is

intended to work with OpenMP/MPI applications [24]. If any process fails and crashes,

all processes connected to the MPS server will crash, meaning one faulty serverless

function will break all functions using that GPU, which we have frequently experienced

in our testing.

Thus, neither MIG nor MPS are suited for serving FaaS workloads. Moreover, they

are not uniformly available across GPUs—for example, Nvidia’s Jetson IoT GPUs

do not support MPS [4], and MIG support is only found in select GPUs after 2020

supporting Nvidia’s Ampere architecture. Our requirement is to support acceleration

for GPUs which may not be state of the art and thus not support hardware assisted

virtualization such as MIG or vGPUs. Instead, we seek to interweave scheduling and

multiplexing techniques to maximize fairness and throughput.

148

6.3 Design: Scheduling GPU Functions

The main new contribution and component of our hybrid serverless computing

platform is the scheduler for GPU functions, which we describe in this section.

The different hardware and workload model of GPUs requires a different approach

to scheduling as compared to conventional CPU function scheduling. To tackle

these challenges, we first show that fair queuing as used in I/O scheduling can be a

useful framework for GPU scheduling (Section 6.3.1), then describe the GPU-specific

scheduling (Section 6.3.2) and memory management optimizations (Section 6.3.3).

6.3.1 Key Insight: GPUs as Multi-Queue I/O Devices

We claim that the tradeoffs and challenges of guaranteeing fairness and high

throughput for serverless GPU workloads are similar to modern I/O scheduling.

Specifically, we can view GPUs as multi-queue I/O devices, and use fair scheduling al-

gorithms like MQFQ [129] to provide a rigorous and well-tested conceptual framework.

From a workload perspective, the I/O heterogeneity and fairness of different applica-

tions is similar to FaaS functions’ heterogeneity. Similarly, modern disks have multiple

internal dispatch queues, which also maps to the temporal and spatial multiplexing

offered by GPUs. Successive invocations see lower latency from temporal and even

spatial locality, a fact requiring significant attention when maximizing throughput.

Our scheduler maintains multiple dispatch queues, each queue corresponding to an

individual function. These queues (also called flows) hold invocation requests which

are analogous to disk read/write requests. Multiple invocations dispatched from a

single flow preserve temporal locality and benefit from warm starts. The GPU, just

149

λ1

λ1

λ1 λ2

λ3

GPUs

GPU 0

λ1

λ2λ1

Global VT

Throttle Limit

Insert

λ1 Container

User Code

Driver

Agent Shim

λ3 Container

Flow finish VT

Flow VT

GPU Manager

Move
memory

GPU Queue

Dispatch

Run kernels
on device

Monitor
Utilization

GPU
Token

Container Pool

λ2 Container

GPU 1

λ3 λ2λ1

2

3

54

1

Fig. 6.2: Scheduling GPU functions as flows with Multi-Queue Fair Queuing. Invo-
cations are dispatched based on the virtual time. The container pool helps
with warm starts.

150

like modern NVMe disks, also supports parallel dispatches, and we keep a subset

of flows in the “active” state. Flows without en-queued invocations are “inactive”.

Fair queuing uses the notion of virtual time (VT) to capture the amount of service

rendered to flows (normalized by priority weight). The flow’s VT grows by a fixed

increment after an item is removed and dispatched for execution. Flows are selected

for dispatch based on their VT ’s, and fairness arises from a bound on the maximum

difference of flows VT ’s.

Our insight is that the above classic fair queuing framework can be extended to meet

the challenges of serverless GPU scheduling. Locality is maintained by dispatching

successive requests from an active flow, by borrowing ideas from anticipatory scheduling

and using MQFQ’s concurrent dispatch, which increases throughput but still maintains

fairness (albeit with a larger inter-flow VT bound compared to classic fair queuing with

a single active flow). Each flow can be handled by a separate thread which can dispatch

requests concurrently, taking advantage of device-level parallelism. The amount of

device parallelism is configured and controlled via tokens with the D parameter

(Table 6.2). To prevent popular functions from monopolizing the GPU, flows are

throttled if their VT exceeds the global VT (Global VT) (which is the minimum of all

flows’ VT) by a certain threshold (T). Fair queuing provides the necessary parameters

for principled and tunable batching in an online manner, for highly dynamic and

heterogeneous FaaS workloads.

6.3.2 MQFQ-Sticky: Locality-enhanced Fair Queuing

The above MQFQ scheduling framework was designed for I/O. However, GPU

functions have different compute and memory footprints, execution runtimes, and

151

Tab. 6.2: Key symbols and parameters for MQFQ-Sticky.

Symbol Description
VT Virtual Time, device wall clock service time accrued by a flow

Global VT Minimum VT across all active flows
T Amount any flow’s VT can exceed Global VT before being throttled
D Device concurrent invocations, can be fixed or dynamic but bounded

TTL Time-to-live for an empty flow to become inactive

cold vs. warm execution times; all of which diverge from disk assumptions. The GPU

device model is also different: the device parallelism is lower (SSDs support hundreds

of active threads), and execution performance is highly sensitive to utilization and

interference. We therefore modify the original MQFQ design to account for these

differences, to get the maximum performance out of our accelerators.

Unlike disk requests with uniform block sizes, function execution times can vary

significantly. We account for this by tracking the historical average execution time τk of

each function k, and when an item is dispatched, its flow’s VT is instead incremented

by τk/wk, where wk is the priority weight of the function. Thus shorter functions

are allowed more invocations than their long counterparts, but both get equivalent

wall time on the GPU. After an invocation is dispatched, Global VT is updated if

necessary to a potentially new global minima across flow VTs.

Since GPU memory is limited, we use the flow states for proactive memory

management. Flows that become active have their data moved onto the device in

anticipation of use (if space is available). When a container is about to execute, we

proactively move all its data to the GPU. Conversely, throttled and inactive flows have

their data moved off-device, because we don’t expect them to run in the near future.

More details about the data monitoring and movement are described in Section 6.3.3.

Further modifications of ours pertain to how functions are drained and added to the

152

queues, and are described below.

Anticipatory Scheduling. Function performance is impacted by the availability

of a warm container, and data in GPU memory. We introduce anticipatory scheduling

to MQFQ to maximize the use of both. Anticipatory scheduling for disks [137] boosts

locality by keeping request streams “active” even if they are empty, in anticipation

of future requests, which is especially beneficial for interactive applications. If a flow

is empty (i.e., it has no pending invocations), then instead of immediately marking

it inactive, we provide a grace period. Without this grace period, because of the

proactive memory management described above, functions would see their warm

containers immediately removed from GPU memory. Instead, we keep empty flows

active for a configurable TTL (time to live), based on the function’s inter-arrival-times.

Specifically, we set the flow TTL to α× IAT, where α is a tunable parameter. This

policy is guided by the observation that reuse-distance is long-tailed [113], so a single

global TTL is not ideal for both popular and rare functions.

Flow Over-run. Our second technique for improving warm starts is to allow the

flows to dispatch invocations in small “mini-batches”. An active flow’s start time

is allowed to be T units ahead of Global VT. T is the second main configurable

parameter: larger values will result in larger batches and more locality, but less

fairness, since functions will have to wait longer before their batches are dispatched.

If flow.VT + T ≥ Global VT, then the flow is throttled. It may return to the active

state only after other flows get to run and the Global VT increases.

Device Concurrency and Feedback. Because each function uses different

amounts of compute and memory during execution, a fixed level of device parallelism

(D) like in disk scheduling may be sub-optimal. We therefore track memory usage

153

of running containers and GPU utilization to adjust D dynamically, to minimize

contention and execution overhead. This utilization-based feedback permits different

scheduling rates based on the dynamic workload characteristics. We take two input pa-

rameters: the device utilization threshold (such as 90%), and the maximum parallelism

level (irrespective of utilization). A coarse-grained controller loop runs every 200 ms

to check the real-time utilization and changes the D level dynamically to ensure the

utilization is under the threshold. Higher thresholds increase utilization and reduce

queuing, but risk higher performance interference. More details of memory usage and

GPU monitoring are described in Section 6.3.3 and Section 6.3.4 respectively.

Dispatch Concurrency. In classic MQFQ, flows can concurrently dispatch

their requests (as long as they are within the T threshold). From a FaaS control

plane perspective which needs to track invocation status carefully, we prefer a single

dispatch thread which picks the eligible candidate flow queue (such that flow.VT <

Global VT + T). Thus, the dispatch is not concurrent, which results in the most fair

outcome via selecting flow with the lowest VT (i.e., earliest arrival). However, this

reduces locality and batching opportunities, resulting in poor function performance.

To remedy this, we pick the next flow from the set of candidate flows by sorting

on both recency and locality, as shown in line 6 of Algorithm 3. Our heuristic prefers

longer queues which provide more batching opportunities and reduces their larger

backlog. Ties are broken in favor of the flow with the least number of currently

executing invocations (Line 9). This encourages multiple flows to progress and reduces

the chance of a cold start caused by concurrent execution of the same function. Flow

stickiness from this heuristic provides sufficient temporal locality between active flows

to maximize throughput. This completes the description of the key attributes of our

154

MQFQ-Sticky algorithm. We note that it maintains the fairness properties, since

we are basically emulating dispatch concurrency, but prioritizing longer flows within

the eligible flow window. That is, we still retain the MQFQ fairness property, which

states that the service received (S) by two active flows during a span of wall-clock

time (t1, t2) is bounded by:

∣

∣

∣

∣

Si

wi

−
Sj

wj

∣

∣

∣

∣

≤ (D − 1)

(

2T +
τi
wi

−
τj
wj

)

(6.1)

Because of the controlled concurrency, a smaller bound may be possible for MQFQ-

Sticky, which is part of our future work. The intuition is that classic MQFQ has O(T !)

possible permutations for dispatch, whereas our heuristic restricts the permutation

space which is a strict subset.

6.3.3 Integrated Memory Management and Scheduling

Each container has a custom shim that intercepts calls to the GPU driver, specifi-

cally those for initialization and memory allocations. Requests by functions to allocate

physical memory are captured in and converted into UVM (virtual device memory)

allocations, allocation metadata is stored, and the result is returned to function. We

use MQFQ flow states to guide memory movement. When some flow becomes active,

all its CUDA-malloc’ed regions are prefetched into the GPU memory, in anticipation

for continued use. We introduce and maintain a container pool of such created GPU

containers, and executions of the function results in a GPU-warm start. The efficacy

of this container pool is restricted by physical GPU memory, and thus throttled

and inactive flows have their regions marked for eviction. This entails swapping and

155

Algorithm 3 MQFQ-Sticky algorithm.

1: procedure Dispatch

2: Global VT← minf∈flows(f.VT)
3: chosen← None
4: for flow ∈ flows do
5: update state(flow,Global VT)

6: cand← filter(flow.active ∧ flow.len > 0, f lows)
7: sort(cand, on : length)
8: if D ̸= 1 then
9: sort(cand, on : in flight)

10: chosen← top(cand)
11: token← get D token(chosen)
12: if token == None then
13: return None
14: return chosen.pop()

15:
16: ▷ Update state of flow, given the global VT
17: procedure update state(flow, Global VT)
18: if flow.is empty and flow.in flight == 0 then
19: if Date.Now()− flow.last exec ≥ TTL then
20: ▷ Flow has expired
21: flow.state← Inactive

22: else if flow.VT−Global VT < T then
23: ▷ Flow has exceeded threshold
24: flow.state← Throttled
25: else
26: flow.state← Active

156

moving their GPU memory regions back to the much larger host CPU memory, with

this eviction done asynchronously using LRU (least recently used) order. In rare

cases, a throttled and swapped out flow may get invoked again, which leads to a

“GPU-cold but CPU-warm” start since the container is already fully initialized, but

data dependencies are not located on device. In the above case, prefetching may need

to evict some other container’s GPU regions, increasing latency.

6.3.4 Multi-GPU Load Management and Feedback

The GPU monitor is responsible for two key mechanisms: tracking GPU assignment

and monitoring GPU utilization. Creating a GPU context uses physical memory we

can’t control, so the monitor only allows a fixed number of containers to exist at one

time. Note that we support multi-GPU systems, and still maintain a single set of

MQFQ flow queues per system. New functions are launched on the GPU with the

most available resources and future invocations of the function run on the same GPU

to take advantage of locality.

Dynamically setting D is dependent on the two computing and memory resource

limitations of GPUs. Because we intercept memory allocations, we can closely track

device memory usage of containers thanks to our driver shim, and only allow a new

dispatch when the needed container won’t overload the device’s physical memory.

Ensuring there is available compute is not as straightforward to manage as memory

due to unpredictable function characteristics. An ML inference task for example

could have known compute usage, since input and weight tensors have fixed uses

based on the execution graph. Other types of GPU functions can launch compute

kernels unpredictably, based on the application’s internal control flow. The actual

157

size and number of kernel launches often vary with function arguments, making an a

priori utilization intractable. Accepting this, we choose to externally monitor device

utilization and launch new invocations when headroom is deemed sufficient to support

another dispatch. To avoid a thundering herd of launches, we increment the tracked

usage by a factor of 1/D, and let the next monitoring update capture actual usage.

When both resources are deemed available for a dispatch, we “increase” D by allowing

the item to start executing. For this additive increase control-loop, we require Dmax

as another parameter for providers to set upper-bounds based on the workload and

service requirements.

6.4 Implementation and Microbenchmarks

This section provides implementation details of our opportunistic GPU functions

and microbenchmarks of the optimizations. We have implemented the scheduling and

multiplexing policies as part of a control plane for hybrid serverless computing. We

use Ilúvatar [112] as the base, and our implementation has has three main components:

i) GPU scheduling policies, ii) CUDA multiplexing, and iii) policies for dispatching

functions to both CPUs and GPUs based on speedup. Ilúvatar is a low latency and

highly scalable FaaS control plane whose overheads are more than 100x lower than

OpenWhisk for CPU workloads, which it achieves due to per-worker queues, and

asynchronous and batched execution of non-critical resource management operations.

Our GPU function implementation adheres to the above design principles, and is

implemented in around 3,000 lines of Rust.

Invocations are dispatched by a dedicated thread which monitors available GPU

resources, and if GPU tokens are available, selects a function to execute based on

158

Algorithm 3 described in the previous section. The dispatch thread is also notified

upon invocation completion events, which helps maintain high device parallelism (D).

For servers with multiple GPUs, we maintain a single dispatcher which allows late

binding of functions to individual GPUs. Locality is still maintained by the dispatcher

implementing “sticky” load balancing among GPUs: line 9 helps us avoid moving

functions across GPUs and miss the high impact of cold-starts. Function flows and

VT tracking are kept in one data structure, and protected behind Read/Write locks.

GPU functions have a special “Device” tag as part of their registration metadata,

which also informs scheduling decisions. GPU functions may also register a CPU

counterpart, which is invoked when GPU acceleration is not necessary. The CPU

vs. GPU dispatch decision is made before functions are inserted into the respective

device queues. Our current dispatch policy creates and uses the GPU speedup as the

key decision metric, and runs the top-p percentile of functions on GPUs (i.e., using

a relative utility framework). We have also implemented more advanced dispatch

policies which consider multiple attributes like popularity and speedup, but we focus

on the above simple static policy to keep the focus on the GPU scheduling.

Utilization monitoring. We track both GPU compute utilization and per-

container and total device physical memory usage. Using NVML [6] bindings in Rust,

we query compute utilization and record its instantaneous and moving average, for

use in determining D. We query this information every 200 ms to balance having

up-to-date information while avoiding excessive CPU utilization on the host. To track

memory usage, our shim includes a report of memory allocations still held by the

application to the worker alongside other invocation results. This data updates the

container’s record in the worker, which then tracks memory pressure on the device.

159

When a container needs to run, or a flow is made active, we can evict containers

belonging to inactive flows.

FF
T

Im
ag

en
et

Ro
be

rta Eo
s

Iso
ne

ur
al

Ga
us

sia
n

La
va

m
d

Lu
d

M
yo

cy
te

Ne
ed

le
Pa

th
fin

de
r

Sr
ad

Sq
ue

ez
en

et
Py

To
rc

h
RN

N

0

1

2

3

4

5

Ex
ec

 T
im

e
(S

ec
)

No Shim
Shim

1.0

1.1

1.2

1.3

Fu
nc

tio
n

Ov
er

he
ad

Fig. 6.3: Functions see little to no impact from our interception and substitution of
allocation calls. This matches performance promised by Nvidia for UVM
applications.

6.4.1 CUDA Interposition Shim

We run functions inside Docker containers [9] using the Nvidia Container

Toolkit [20] to attach specific GPUs to them. For dedicated GPUs with limited

memory, we use a CUDA interposition “shim” which intercepts CUDA calls made by

the function. Our shim implementation is similar to NVShare [36], but simpler: we

only use it for intercepting memory allocation calls and forcing the function to use

virtual memory. This requires about 500 lines of code (written in C) to be injected

using LD PRELOAD. We use CUDA’s Unified Virtual Memory (UVM) to oversubscribe

device memory. When using UVM, the application sees a unified host-device memory

160

space, with memory pointers being valid in both spaces. The CUDA driver moves

and ensures coherency of UVM memory between the host and device as use and

pressure demands, mimicking disk-based swap space found in operating systems. Our

shim intercepts all calls to the driver for allocations for physical memory made via

cuMemAlloc, and makes a UVM allocation of the same size using cuMemAllocManaged.

We record the size and memory pointer position, then return the pointer to the

application, thus maintaining execution transparency. It can use this memory as if it

were physically allocated, reading, writing, or copying it to the host using traditional

driver calls. If the function already uses UVM, we intercept and forward its allocations,

recording the metadata for our memory management tasks.

The performance overhead of our interception is primarily influenced by the memory

access patterns of the function and the extra layer of virtual memory (UVM), and

is shown for different functions in Figure 6.3. All results are averaged over 10 trials,

and we see a negligible latency impact on most functions. The rest see single-digit

percentage increases, with Srad standing out with a 30% overhead in execution time

due to the UVM shim. These results are in line with Nvidia’s own reporting on the

performance change when migrating applications to UVM [11]. This low overhead

shim is thus ideal for virtualizing GPU memory.

161

CUDA Mad
vis

e
UVM

Pre
fet

ch-
on

ly

Pre
fet

ch+
Sw

ap

Memory Prefetching Strategy

0.0

0.5

1.0

1.5

In
vo

ca
tio

n
La

te
nc

y
(s

ec
.)

Fetch
Execution

Fig. 6.4: Active memory management (Prefetch+Swap) improves execution latency.

6.4.2 Memory Management

We implement the warm pool, memory prefetching, and swapping optimizations

inside the control plane, integrated with the scheduler. Recall that we prefetch the

GPU memory of active functions, which is not provided out-of-the-box by CUDA

UVM. Default UVM only moves memory on-demand, and also exposes madvise hints

(via cuMemAdvise) for memory ranges, but neither allow for deterministic control

of memory placement. Our default policy (Prefetch+Swap) asynchronously copies

memory to the device before invocation, and swaps it back to host memory after the

flow becomes idle (or evicted on-demand using a least recently used policy). After we

choose a flow for dispatch, we call cuMemPrefetchAsync from the shim to prefetch the

container’s GPU memory. Doing this in a non-blocking manner allows us to overlap

prefetching with the control plane marshalling invocation arguments to send to the

162

container. Not having to block while waiting for memory to be moved saves significant

time on the critical path. When a flow is throttled or memory is needed to run other

functions, we direct the shim to again use cuMemPrefetchAsync move memory off the

device to CPU memory.

We compare different memory management policies in Figure 6.4. We run 16

copies of the FFT function from Table 6.1, each using 1.5 GB of device memory which

oversubscribes the GPU’s memory by 50%. Each copy is sequentially invoked 20

times. The impact of these different memory policies are displayed in Figure 6.4, with

average time spent in-shim shown in red and function code execution in black. With

such high overcommttment and the stock UVM driver controlling data placement, the

execution time is 40% worse than the optimal seen in Table 6.1. Execution time is

higher because memory must be paged in on-demand from the host as kernels access

it, and old memory paged out. Surprisingly, using CUDA Madvise to control memory

placement performs slightly worse. The madvise calls to the driver don’t actually

move any memory, and we just waste time sending the memory directives with no

benefit to execution time. In contrast, our Prefetch+Swap policy reduces latency

by over 33% compared to stock UVM. We also compare against a Prefetch-only

policy which does not proactively swap function memory but instead relies on UVM

for reclaiming pages. This shows that adding the swapping optimization (our default),

provides a latency improvement 6%, and matches the ideal non-UVM execution time

listed in Table 6.1.

Our system can also run on heterogeneous and edge hardware, such as the Nvidia

Jetson Orin AGX. Because its integrated GPU has no dedicated memory, our memory

prefetching optimizations are not applicable, but all the other locality, fairness, and

163

dispatching enhacements are relevant.

6.5 Experimental Evaluation

Our experimental evaluation is examines the effectiveness of our scheduling based

approach for opportunistic GPU acceleration for FaaS workloads for three main

metrics: i) on-GPU execution latency (which captures how efficiently we are using the

hardware), ii) per-function end-to-end latency which includes the queue wait time,

and iii) device utilization and throughput for hybrid CPU-GPU systems.

Setup and Workloads. All experiments were run on servers running Ubuntu

20.04 on kernel version 5.4, with a 48 physical core Intel Xeon Platinum 8160 CPU

with hyperthreading disabled, 250 GB of RAM, and an Nvidia V100 GPU running

driver version 470.239.06. This isn’t the latest GPU hardware, and emphasizes that

our design can work with a variety of hardware, doesn’t require advanced features,

and is easily scalable and adaptable to other systems.

Function were sampled from Azure trace [210] in the same manner as previous

works [112,114], and function frequencies are scaled using the empirical CDF of the inter

arrival times, to yield workload traces of different intensities. Based on the execution

times, we select the closest matching GPU function from Table 6.1 that doesn’t exceed

that time. Each experiment is run with the same trace composed of 24 functions, run

for 10 minutes, and presented results are the average of 5 repeated runs. We evaluate

on multiple traces with different function mix and invocation frequency distribution,

providing a wide spectrum of realistic workloads with different heterogeneity and

device loads (Table 6.3). Although MQFQ-Sticky is capable of enforcing per-function

164

QoS, we set the weight of all functions to 1, for ease of exposition. The evaluation is

presented in a top-down manner: we first analyze the end-to-end latency, then show

scaling behavior, and finally investigate the effect of various MQFQ-Sticky parameters

described earlier in Table 6.2.

Scheduling Policies. To examine the locality, fairness, and utilization tradeoff,

we implement and evaluate three additional scheduling policies in addition to our

default MQFQ-Sticky. The second policy is FCFS, which uses the warm pool and

memory management (we move function memory on-device before executing, and

move it back off after each invocation has completed). This represents a scheduling

policy with most of the important GPU optimizations, but one which is not fully

locality or fairness aware. Our third and final scheduling policy variant is Batch, which

also uses all the GPU optimizations, and maximizes locality by batching invocations

of each function individually. Unlike MQFQ-Sticky, Batch greedily maximizes batch

sizes (and hence locality) irrespective of the build-up of other functions.

Using the MQFQ design allows for easy parametrization and implementation of

these and other policies for exploring the locality vs. performance tradeoff. Both

FCFS and Batch use the integrated memory management and CUDA interposition

shim, and thus allow us to separate out the impact of MQFQ-Sticky’s core ideas with

minimal code changes and differences. For FCFS, all functions are inserted into a single

queue. For Batch, we insert invocations into per-function flows, and dispatch the

entire flow containing the oldest item.

165

6.5.1 GPU Scheduling Performance

1 2 3
Maximum Concurrency (D)

50

60

70

80

90
GP

U
Ut

iliz
at

io
n

%

MQFQ-Sticky
Compute %

FCFS
Memory %

Batch

Fig. 6.5: Device utilization for the medium-load trace.

To characterize the differences in the above scheduling policies, we first show

the empirical evaluation with a medium-intensity workload, which comprises of 24

functions with an average arrival rate of 2 invocations per second. This workload

results in average GPU utilization of around 70% (Figure 6.5), and represents the

average case.

Average Latency. The latency across all invocations is shown in Figure 6.6. Not

shown in the figure is the current baseline FCFS Naı̈ve scheduling with Nvidia-docker,

which does not have a container pool and suffers from excessive cold-starts. The

FCFS Naı̈ve average latency is close to 3,000 seconds—a 300× overhead. The

high latency is because of every invocation results in a cold-start, causing a large

queue buildup. Note that our workload trace is open-loop, and thus invocations are

generated at fixed intervals.

166

FC
FS

Ba
tc

h

M
QF

Q-
St

ick
y

FC
FS

Ba
tc

h

M
QF

Q-
St

ick
y

FC
FS

Ba
tc

h

M
QF

Q-
St

ick
y0

20

40

60

Av
er

ag
e

La
te

nc
y

(s
ec

.)

51
.8

26
.8

11
.8

34
.7

12
.0

8.9

70
.9

18
.7

15
.3

D = 1 D = 2 D = 3

Fig. 6.6: Average latency for a medium-intensity workload is significantly lower
with MQFQ-Sticky for different device-parallelism (D) levels.

MQFQ-Sticky outperforms FCFS by 5× with a 11.8 vs 51.8-second average respective

latency thanks to its locality and fairness oriented design. Batch has middle of the

road performance, lacking fairness and advanced locality policies. For this workload,

at higher concurrency levels, MQFQ-Sticky improves latency by an additional 25%

to an 8.9-second average per invocation. Both competing policies also benefit from

concurrency, but neither outperform MQFQ-Sticky. When D is set too high (D=3),

the device cannot handle the higher concurrency, and all policies suffer varying degrees

of degradation due to resource contention and interference. For this workload, the

queuing delays account for more than 99% of the end to end function latency, and

thus scheduling policies have significant impact.

167

0 1 2 3 4 5 6 7 8 9 1011121314151617
Function Number

0

25

50

75

100

125

Av
er

ag
e

La
te

nc
y

(s
ec

.)

MQFQ-Sticky FCFS Batch

Fig. 6.7: The average and variance of per-function latency under a medium-intensity
workload is much lower with MQFQ-Sticky.

Fairness. In Figure 6.7, we show the per-function latency (averaged across all its

invocations). We use inter-function latency variance as our fairness metric. FCFS has

the worst global inter-function latency variance (752), and the highest average latency.

MQFQ-Sticky reduces latency in the range of 2 − 10×, and has only one-third the

inter-function latency variance of FCFS. Also, the invocation latency variance for each

function (the error bars) is 3− 4× lower compared with FCFS and Batch.

Result: MQFQ-Sticky policy provides a 5× reduction in average latency across

all functions, and also reduces their jitter and tail latency by 3− 4×.

6.5.2 Scaling

We now look at load, GPU, and memory scaling properties of MQFQ-Sticky.

Latency vs. load. Table 6.3 shows the latency for different workload traces,

each with a different mix of functions and IATs (inter arrival times), resulting in

different average GPU utilization. In general MQFQ-Sticky performs better at higher

168

Tab. 6.3: The latency benefit of MQFQ-Sticky improves with increasing GPU utiliza-
tion.

GPU Util (%) Req/s MQFQ-Sticky(s) FCFS(s) Batch(s)
28.025 1.122 3.932 7.843 4.962
35.747 1.797 2.432 4.511 2.838
38.889 1.943 3.434 8.031 3.441
42.740 1.690 1.046 1.371 1.054
43.347 2.572 2.929 7.309 3.454
52.054 1.125 2.956 3.512 2.415
57.467 4.263 5.630 37.743 9.585
68.141 2.693 10.543 44.450 13.570
74.216 2.553 8.899 34.719 11.996

utilization, reducing average latency by 4−6× vs. FCFS. When considering the latency

weighted by the number of invocations, and normalized to the no-interference case, the

performance gap is even higher, since smaller functions are more affected by cold-starts

and unfairness in relative terms. MQFQ-Sticky’s weighted normalized latency is more

than 10× lower (vs FCFS) at higher loads, and 2.5× lower vs. Batch.

1 2 3 4 5 6
Max Concurrency (D)

1

2

3

4

5

Av
er

ag
e

La
te

nc
y

(s
ec

.)

Single GPU
Two GPUs

0.2

0.4

0.6

0.8

1.0

1.2
Av

er
ag

e
Ex

ec
 O

ve
rh

ea
d

Fig. 6.8: MQFQ-Sticky also uses locality-aware scheduling for multiple GPUs, signifi-
cantly reducing queuing.

Multiple GPUs. Our system easily scales to orchestrating and dispatching across

169

Tab. 6.4: Hybrid CPU+GPU reduces latency by more than 2x compared to CPU-only
and GPU-only execution.

Case Avg. latency (s)
CPU-only 2.03
1 GPU 3.43
2 GPUs 1.08
CPU+GPU 1.00

multiple GPUs. We run a high-load trace and show the comparison in Figure 6.8

after we add a second, identical, GPU to the server. Two GPUs not only allows

us to run D× 2 invocations, but also do on-the-fly load balancing between them to

avoid compute contention with higher D. As a baseline, the multi-GPU blue dashed

line has 2.3× lower latency at D=1. At higher device parallelism, the multi-GPU

case sees a latency reduction of 4× vs. the single GPU setting. Device parallelism

also slightly increases the execution overhead due to interference, but is offset by the

smaller queues.

Hybrid CPU+GPU execution. For evaluating hybrid execution, we use a

GPU-speedup based dispatch policy. We use offline profiling to obtain the GPU

speedup for functions, and only run the top 50 percentile of functions on GPU, and

rest use the CPU. This corresponds to functions having GPU speedup of > 3× being

eligible for GPU acceleration. Other functions avoid queuing for the GPU and run

immediately on the system’s plentiful 48 CPU cores. The average function latencies

are shown in Table 6.4 for a high-intensity workload. Due to excessive queuing and

contention, a single GPU degrades latency by 38%. Adding a second GPU alleviates

this load and reduces latency by half. Interestingly, hybrid execution with the CPU and

single GPU reduces latency even further, thus showing the benefits of heterogeneous

hardware for FaaS workloads.

170

50

100
D = 1
D = 3

D = 6
FCFS

1 4 8 16 32 64
Warm Pool Size

0

10

Co
ld

 H
it

%

Fig. 6.9: Container-pool reduces cold-starts. MQFQ-Sticky provides higher locality.

Container Pool Size. For temporal locality, the invocation patterns and batching

plays a key role in reducing cold starts. The performance difference between MQFQ-

Sticky and FCFS can be largely attributed to the cold-hit ratio of the invocations.

Figure 6.9 shows the “miss-rate curves” for the medium-intensity trace as we increase

the number of containers in our container pool. We focus on the number of containers

in the pool, rather than MB of pool memory for simplicity. Idle containers do

take up CPU memory, and work managing the memory used by caching containers

is orthogonal to our design [113]. Since MQFQ-Sticky prefers smaller batches of

functions and does anticipatory keep-alive, it has a high temporal locality and its

cold-hit % is in the range of 2-8% across a range of pool sizes and device concurrency.

In contrast, FCFS has 50% cold-starts with a pool size of 4, and achieves parity with

MQFQ-Sticky only at largest pool sizes when the popular functions can fit in the

container cache.

171

6.5.3 Impact of Scheduling Parameters

In this subsection, we explore the effects of configuration knobs to see their effect

on performance, which also sheds a light on the empirical relationships between

fundamental parameters of locality and throughput.

0 1 3 5 7 10
Allowed Overrun (T)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Av
er

ag
e

La
te

nc
y

(s
ec

.)

Service Average: Wall Time
Service Average: 1.0

Fig. 6.10: Larger T yields more batching and lower latencies because it allows popular
flows to run ahead. Using historical function execution latencies helps
significantly compared to uniform flow costs in classical fair queuing.

Flow over-run (T). Recall that flow virtual times are within T of each other.

Larger T results in more locality and batching opportunities, but decrease fairness,

since flows may get to monopolize resources for longer before being throttled. Fig-

ure 6.10 shows the average latency decreasing, but with diminishing returns, as the

over-run is increased. The figure also shows the value of using function wall clock

execution times. When all flow usages are assumed to be constant (1.0 in the figure),

long functions may dominate, which increases average latency by more than 3x. Thus,

a small amount of over-run guided by function characteristics helps significantly.

172

0.0 0.1 0.2 0.3 0.5 1.0 1.5 2.0 3.0 4.0
Flow Timeout (α)

3.0

3.5

4.0

4.5

Av
er

ag
e

La
te

nc
y

(s
ec

.)

Fixed
IAT

0.025

0.050

0.075

0.100

0.125

0.150

Av
g.

 N
or

m
.

Ex
ec

ut
io

n
Ti

m
e

Fig. 6.11: Anticipatory flow keep-alive (non-zero flow TTL) can reduce latency by up
to 50%. We use function IAT for scaling the TTL.

Flow keep-alive TTL. Empty flows remain active until a TTL expires, after

which they’re made inactive and have their resources evicted. Figure 6.11 shows the

improvement to both execution time as compared to ideal warm performance and

latency as the TTL grows. The execution overhead is reduced because of warm start

locality, and is the main factor behind latency reduction. Setting any global TTL

(the solid line), at even a small 0.1 seconds, improves latency and overhead by 25%

and 50% respectively. Increasing the TTL to up to 4 seconds sees significant, but

diminishing, returns.

By default, we base TTL on each function’s inter-arrival-time (IAT), rather than

have a global fixed time. This method sets the TTL for each flow to the IAT multiplied

by the value (α) on the X axis, plotted as the dashed line. For flow timeout (α),

our default range is between 1 and 2, which contains the minima, as shown for this

particular trace (at 1.5). Higher TTLs (α > 3) may result in too many active functions

and pressure on the container pool. However, our design is robust to very large

TTLs: the pool uses LRU eviction and the resulting impact on performance even

at high TTLs is low. Thus, anticipatory scheduling improves latency by 50%, and

173

MQFQ-Sticky performance is not sensitive to the TTL.

2 3 4 5 6
Maximum Concurrency (D)

1.0

1.5

2.0

2.5

3.0
Av

g.
 N

or
m

.
Ex

ec
ut

io
n

Ti
m

e
Fixed D
50

80
90

95
No Concurrency

Fig. 6.12: Concurrent function invocations (D) increase execution time due to con-
tention. GPU utilization thresholds reduce overload.

Device Concurrency. We now explore the tradeoff due to device concurrency,

which can improve utilization, but also risks performance interference and is dependent

on the co-located applications, which are constantly changing in FaaS workloads. We

run our medium workload and adjust device concurrency using D and examine the

effect on execution time (without considering queuing delays) in Figure 6.12. All

numbers are normalized to the no concurrency (i.e. D = 1) case. When we increase

D and use a fixed value, shown in the gray line, we always have D number of

invocations trying to execute on the GPU concurrently. Normalized execution time is

unsurprisingly correlated with D, as GPU contention between invocations causes up

to 100% overhead at the maximum D = 6.

174

2 3 4 5 6
Maximum Concurrency (D)

4

5

6

7

8

Av
er

ag
e

La
te

nc
y

(s
ec

.)

Fixed D
50

80
90

95
No Concurrency

Fig. 6.13: Concurrent execution can reduce latency by reducing queuing. However,
this is negated by execution interference at higher levels.

By default, we use the GPU utilization upper bound (shown by different lines in

Figure 6.12). Setting the upper bound to 50% utilization prevents over-saturation of

the GPU, and reduces overheads significantly. However, this increases the queuing and

total latency, as shown in Figure 6.13. For this workload, the total latency increases

slightly due to contention and interference, and the limited memory of our GPU (16

GB). The “sweet spot” is D == 2, and latency increases slightly by 30% at higher

levels. Our present design leaves the maximum D to the operator, since the utilization

based capping dampens its effect. Thus, allowing concurrent dispatch to the GPU,

controlled to minimize contention, significantly improves global latency and utilization

of the device.

Result: Our introduced features such as flow over-run, anticipatory scheduling,

utilization-driven concurrency, all contribute to latency reduction by 1.5 − 3×. A

wide range of these parameters yield similar performance, making our system robust,

yet still providing operators enough flexibility for fine-tuning based on workloads and

operational requirements.

175

6.6 Related Work

Locality is an important design and optimization principle in FaaS—and is a funda-

mental result of code and data initialization required for each function. Keep-alive poli-

cies for warm-starts apply temporal locality [98,203,210,240] and caching [113,226] prin-

ciples for the CPU memory pool; load balancing also benefits from stickiness [32,46,114].

Our work extends these principles to GPU functions via locality enhanced fair queuing

and proactive memory management.

GPUs in serverless computing is already a rich and fast-growing area of research.

A big portion of prior work [107, 151, 180] focuses on disaggregated accelerators,

with GPUs accessed over the network using techniques such as rCUDA [96]. In

contrast, we look at local GPUs without remote execution. Using FaaS-inspired

abstractions to provide GPU acceleration as a service is also common: applications

are broken down into kernels which can be run “anywhere”. Kernel-as-a-Service [187]

and Molecule [94] are two examples of this approach, where the main challenges are

designing and providing efficient and usable API-remoting mechanisms. [143] also uses

remote memory pooling to address the exacerbated cold-start problems for GPUs,

and also proposes parallel data-dependency and compute context prefetching through

code-level optimizations. Paella [181] similarly breaks apart model inference tasks into

CUDA kernel launches to minimize scheduling “bubbles”. These and other recent [276]

specialized code-modifying techniques are orthogonal to our work, since we require

general black-box functions.

The popularity of ML inference has resulted in a large number of specialized

solutions to efficient GPU scheduling, which have similar challenges, but a different

176

optimization spaces: inference resource requirements are much more deterministic [121]

and thus amenable to data-driven optimization [38], and the lack of isolation among

requests provides many locality-enhancing and batching opportunities [207,260]. For

instance, both FaST-GShare [120] and TGS [255] leverage profiles of ML workloads to

monitor GPU utilization and use 2d bin-packing (with time and memory dimensions)

to schedule inference workloads.

Finally, scheduling is crucial for FaaS performance, with key tradeoffs in late vs.

early binding [146,147]. Efficiency and fairness tradeoffs in GPU scheduling have been

recently resolved [174], but only in the offline context with a limited number of batch

jobs with known utilities.

This chapter showed that harnessing GPU resources for functions is practical

and can achieve good performance through the use of locality-aware scheduling and

memory management. Black-box containerized functions and heterogeneous and

dynamic function workloads present many challenges to efficient GPU utilization.

MQFQ-Sticky, our scheduling algorithm, is inspired by I/O fair scheduling. Empirical

analysis of its performance indicates it reduces function latency by more than 50×

compared to current GPU containers.

177

7. Future Work and Conclusion

7.1 Future Work

This thesis is highlighted by the design and development of the Ilúvatar serverless

control plane. I want to keep using Ilúvatar as a springboard for further work both in

extension of research described here, and some that is wholly new.

7.1.1 Work Stealing Scheduling

Load balancers cannot scale to serve billions of invocations while keeping an

oracle-level knowledge of a cluster of thousands of workers. We must accept some

load imbalance on workers – scenarios that become especially common in bursty

FaaS scenarios. Work stealing [59,123,164] allowing workers to adjust load amongst

themselves. Idle nodes can steal invocations from overloaded machines and run them

to locally improve both their utilization and global latency. This can also be done in

a locality-preserving manner, by borrowing the ideas from chapter 4. A worker can

steal work “up” the consistent hashing ring in addition to the load balancer flowing

invocations “down” when a worker is overloaded.

Distributed scheduling [106, 231] has been explored, and the ability of nodes to

make on-the-fly decisions has proven highly beneficial. They are naturally more aware

178

of local load and container pool conditions, and can make immediate and more optimal

balancing choices.

7.1.2 Polymorphic Functions

Chapter 6 of this thesis introduced scheduling of GPU functions, but also the

idea that a function can run on different compute types. It used Python functions

capable of running on traditional CPU or be accelerated by a GPU. One of the later

experiments, shown in Table 6.4 of Sec. 6.5.2, only selected functions to accelerate

that saw significant speedup, choosing to run the rest on CPU. I wish to extend these

two ideas, that functions

1. Are polymorphic, in that without changing code they are capable of running on

several distinct compute platforms

2. And that we can opportunistically accelerate them by scheduling on devices such

as GPUs to improve latency.

The latter goal of opportunistic acceleration is a complex scheduling problem,

where a worker can place an invocation on any supported compute considering local

conditions. It will have to accurately estimate the latency of running an invocation,

knowing a GPU may have faster execution time, but could face queuing delays that

would make us prefer the plentiful CPU. Heterogeneous function characteristics (see

Table 6.1) become more complex as runtimes change from multiplexing the GPU.

Calculating this estimate will need an accurate model of how functions are affected by

GPU memory and compute sharing. The worker will also have to be future-looking,

179

knowing that a GPU cold start is an expensive one-time cost that will ultimately

lower latency. A simple calculation looking at warm CPU time vs cold GPU time in

most cases will always choose the former, yet a popular function will benefit from

moving to GPU.

The functions looked at so far a polymorphic because they rely on libraries that

implement algorithms for both compute platforms. Serverless can take advantage of

its access to function source code to take a more agnostic approach. Many functions

are small and take up rare CPU space, but a GPU has thousands of cores to run

such tasks. Previous work [50, 119, 177] has shown that code can be transpiled or

generated to run on GPU, CPU, and more. I want to explore the possibilities of

translation, alternate mechanisms to accomplish the same goal, and integrate them

with the demonstrated scheduling and memory-manipulation techniques in chapter 6.

7.1.3 Serverless for Distributed Computing

Platforms allow chaining functions via directed acyclic graphs (DAGs) to make

larger applications where outputs of a function are passed by the platform as arguments

to the next one(s) in the DAG. Concurrent computing interactions are limited – two

concurrent invocations cannot communicate directly with one another and all data

sharing must be done via remote storage. Several platform-managed FaaS dataplanes

have been designed to improve data sharing between concurrently running [117,222]

or the input and outputs of DAG functions [32,178,201]. Functions should not need to

use intermediaries to communicate, especially when computing on a shared problem

or dataset.

The serverless stack must be enhanced to let invocations interact like true parallel

180

applications that are ubiquitous in cloud and high-performance computing. This can

be taken in several theoretical directions, the first of which is a Hadoop-style [26] cluster

scheduler that creates many workers operating on a shared dataset. Applications

for these cluster distributed systems are programmed with API hooks to abstract

away how they interact, as the platform coordinates placement and data. The other

direction is to support MPI [29] functions, where many processes communicate via

discrete messages to share data or synchronize themselves. MPI applications also

utilize an API that handles all such communication details, abstracting the application

away from the actual implementation. Both application types are designed to move

between implementations with no code changes, making them easily portable to a

serverless context. The platform would just have to interpose as the expected API

and coordinate the possible hundreds of concurrent containers needed to match the

scale such applications run at.

7.1.4 FaaS Security

The trusted computing base (TCB) in serverless computing is extremely large,

especially when compared to other forms of cloud computing. To start with, a user

uploads unencrypted source code to the platform for it to use. This code is then

run on the same virtualization stack use in cloud, with the addition of a complex

containerization system. A new control plane exists, with pieces spread across nodes of

varying functionality that move private arguments and outputs between them. Lastly,

libraries and language runtimes are also controlled by the platform, with the only

guarantee being version compatibility. The platform also has a security concern in

that they’re running arbitrary untrusted code on their hardware.

181

These challenges make one question if secure FaaS is even possible, and once

security measures are considered, new performance problems appear. Cold start costs

are significantly higher, with a 512 MB memory enclave taking up to 30 seconds to

prepare [234]. A dynamic memory enclave has notable issues when trying to adjust

size, but using a fixed allocation wastes memory via fragmentation. Others have

pointed out that a function may service multiple end-users [155,278], and that enclaves

themselves cannot be trusted after an invocation and must be “cleaned” in some way.

There are also multiple types of trusted execution environments (TEEs) with varied

system designs as well [44,138,236,247]. We must ask where does the control plane

live? and what is in the TCB? Currently, the control plane has an agent inside each

container that connections function user code via a pseudo-“ABI” (application binary

interface) to the outside worker. Presumably this must be made part of the TCB and

efficiently be able to move arguments and results between worker and function.

Ilúvatar is in an ideal position to answer the control plane question. It could

dynamically support multiple TEEs, already being able to handle several isolation

mechanisms, adding TEEs is just a matter of engineering work. Then select the optimal

TEE for a function becomes a consideration of a number of factors. Functions have

different use cases leading to separate security and performance goals. A CPU-bound

piece of code will want access to features that a web service won’t, putting both in

the same TEE negatively affects the entire system. This break from a one-size-fits-all

strategy aligns with the FaaS ethos and unlocks new optimization strategies. The

multiple pieces of Ilúvatar can also be lifted to handle complex split system designs

used by some TEEs [138,236]. They place parts of the control plane in the TCB to

manage TEEs, and others in untrusted user space for the remainder of required work

182

7.2 Conclusion

This thesis detailed the new cloud computing paradigm called serverless computing,

and examined the control plane used to make it a reality. It also went into the challenges

faced by this new service, proposing several algorithms, designs, and techniques to

improve resource usage and enable new applications to run on it.

Single-worker resource optimization was explored in Chapters 3 and 6, and

validated the criticality of warm-starts to low latency in FaaS. Chapter 3 described

a cache management design called FaasCache that uses function characteristics to

better manage in-memory containers for better performance. Knowing that some

containers will provide better value if kept available longer, it prunes the container

pool of those less useful to provide better locality and maximize memory utilization.

A novel resource, GPU acceleration, was proposed in Chapter 6. Several combined

mechanisms allowed the efficient and fair scheduling of black-box functions to receive

acceleration from GPUs. Memory is oversubscribed and multiplexed, allowing the

control plane can adjust allocations on-demand to prevent device exhaustion and

overhead. It also creates a novel GPU container pool that allows the first locality

measures for accelerators. These are tied together with new queue design that favors

data locality for performance, but ensures no function faces starvation.

A cluster approach at managing worker load imbalance and even overloading

was laid out in Chapter 4. Heterogeneous and bursty Faas workloads are a unique

challenge in cloud management, and we created an algorithm to respond accordingly.

CH-RLU starts by favoring locality and preferring to always run a function on the

same worker. At the same time, it identifies those which might overwhelm workers,

183

and spreads their invocations across several workers in a locality-friendly manner.

Overload scenarios are prevented by tracking worker load, estimating the impact of

dispatches, and redirecting dispatches when load becomes too high. The locality focus

combined with preventing worker exhaustion lower latency significantly over other

FaaS load balancing policies.

Chapter 5 detailed a new serverless control plane design called Ilúvatar we created

to fix problems with existing offerings. It can be used to accelerate FaaS research and

make explore new possibilities that couldn’t be done before.

Serverless computing promises to be an efficient and valuable system in cloud

computing. In this thesis we have demonstrated several techniques that can greatly

enhance the resource management and utilization of FaaS control planes. The combined

large scale, breadth of research topics, and heterogeneous workloads of FaaS leaves

many more avenues to explore. By all measures it is expected to grow rapidly, meaning

new features will need to be developed, performance issues addressed, and features

developed to extend the classes of programs that are efficient on it.

184

BIBLIOGRAPHY

[1] Best practices for GPU-accelerated instances. https://www.alibabacloud.

com/help/en/fc/use-cases/best-practices-for-gpu-accelerated-

instances/.

[2] Containerd: An industry standard container runtime. https://containerd.

io/.

[3] Keeping Functions Warm - How To Fix AWS Lambda Cold Start Issues. URL:

https://serverless.com/blog/keep-your-lambdas-warm/.

[4] MPS support of Jetson Xavier . https://forums.developer.nvidia.com/t/

mps-support-of-jetson-xavier/62397.

[5] Netflix & AWS Lambda Case Study. https://aws.amazon.com/solutions/

case-studies/netflix-and-aws-lambda/.

[6] NVIDIA Management Library. https://developer.nvidia.com/nvidia-

management-library-nvml.

[7] PID Controllers. https://en.wikipedia.org/wiki/PID_controller.

[8] Project: GPU-Enabled docker image to host a Python PyTorch Azure Function.

https://github.com/puthurr/python-azure-function-gpu.

185

https://www.alibabacloud.com/help/en/fc/use-cases/best-practices-for-gpu-accelerated-instances/
https://www.alibabacloud.com/help/en/fc/use-cases/best-practices-for-gpu-accelerated-instances/
https://www.alibabacloud.com/help/en/fc/use-cases/best-practices-for-gpu-accelerated-instances/
https://containerd.io/
https://containerd.io/
https://serverless.com/blog/keep-your-lambdas-warm/
https://forums.developer.nvidia.com/t/mps-support-of-jetson-xavier/62397
https://forums.developer.nvidia.com/t/mps-support-of-jetson-xavier/62397
https://aws.amazon.com/solutions/case-studies/netflix-and-aws-lambda/
https://aws.amazon.com/solutions/case-studies/netflix-and-aws-lambda/
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://en.wikipedia.org/wiki/PID_controller
https://github.com/puthurr/python-azure-function-gpu

[9] Docker, 2015. URL: https://www.docker.com/.

[10] Kubernetes, 2015. URL: https://kubernetes.io/.

[11] Unified Memory for CUDA Beginners. https://developer.nvidia.com/blog/

unified-memory-cuda-beginners/, 2017.

[12] Lambda Warmer: Optimize AWS Lambda Function Cold Starts,

2018. URL: https://www.jeremydaly.com/lambda-warmer-optimize-aws-

lambda-function-cold-starts/.

[13] AWS Lambda predictable start-up times with provisioned concur-

rency. https://aws.amazon.com/blogs/compute/new-for-aws-lambda-

predictable-start-up-times-with-provisioned-concurrency/, Dec 2019.

[14] Azure Functions Warm-up trigger. https://docs.microsoft.com/en-us/

azure/azure-functions/functions-bindings-warmup, 2019.

[15] FunctionBench. https://github.com/ddps-lab/serverless-faas-

workbench, 2019.

[16] Apache Kafka: Open Source Distributed Event Streaming Platform. https:

//kafka.apache.org/, 2020.

[17] Apache OpenWhisk: Open Source Serverless Cloud Platform, 2020. URL:

https://openwhisk.apache.org/.

[18] crun: A fast and low-memory footprint OCI Container Runtime fully written in

C. https://github.com/containers/crun, 2020.

186

https://www.docker.com/
https://kubernetes.io/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://www.jeremydaly.com/lambda-warmer-optimize-aws-lambda-function-cold-starts/
https://www.jeremydaly.com/lambda-warmer-optimize-aws-lambda-function-cold-starts/
https://aws.amazon.com/blogs/compute/new-for-aws-lambda-predictable-start-up-times-with-provisioned-concurrency/
https://aws.amazon.com/blogs/compute/new-for-aws-lambda-predictable-start-up-times-with-provisioned-concurrency/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-warmup
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-warmup
https://github.com/ddps-lab/serverless-faas-workbench
https://github.com/ddps-lab/serverless-faas-workbench
https://kafka.apache.org/
https://kafka.apache.org/
https://openwhisk.apache.org/
https://github.com/containers/crun

[19] Google Cloud Functions Tips and Tricks. https://cloud.google.com/

functions/docs/bestpractices/tips, 2020.

[20] https://docs.nvidia.com/datacenter/cloud-native/container-

toolkit/latest/install-guide.html. https://docs.nvidia.com/datacenter/cloud-

native/container-toolkit/latest/install-guide.html, 2020.

[21] OpenFaaS : Server Functions, Made Simple. https://www.openfaas.com, 2020.

[22] Automate the Data Science Pipeline with Serverless Functions. https://nuclio.

io/, 2023.

[23] Knative is an Open-Source Enterprise-level solution to build Serverless and

Event Driven Applications. https://knative.dev/docs/, 2023.

[24] Multi-Process Service :: GPU Deployment and Management Documenta-

tion, 2023. URL: https://www.nvidia.com/en-us/technologies/multi-

instance-gpu/.

[25] NVIDIA Multi-Instance GPU, 2023. URL: https://docs.nvidia.com/deploy/

mps/index.html.

[26] Apacha Hadoop, 2024. URL: https://hadoop.apache.org/.

[27] Cold Starts. https://www.alibabacloud.com/help/en/fc/use-cases/quasi-real-

time-inference-scenariossection-rzz-zcb-w4e, 2024.

[28] InfluxDB Time Series Data Platform — InfluxData, 2024. URL: https://www.

influxdata.com/.

187

https://cloud.google.com/functions/docs/bestpractices/tips
https://cloud.google.com/functions/docs/bestpractices/tips
https://www.openfaas.com
https://nuclio.io/
https://nuclio.io/
https://knative.dev/docs/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://hadoop.apache.org/
https://www.influxdata.com/
https://www.influxdata.com/

[29] Open MPI: Open Source High Performance Computing, 2024. URL: https:

//www.open-mpi.org/.

[30] Open Source Cloud Computing Infrastructure - OpenStack, 2024. URL: https:

//www.openstack.org/.

[31] The Container Security Platform — gVisor, 2024. URL: https://gvisor.dev/.

[32] Mania Abdi, Sam Ginzburg, Charles Lin, Jose M Faleiro, Íñigo Goiri, Go-

har Irfan Chaudhry, Ricardo Bianchini, Daniel S. Berger, and Rodrigo Fonseca.

Palette Load Balancing: Locality Hints for Serverless Functions. In Proceedings

of the 18th European Conference on Computer Systems (EuroSys). ACM, May

2023. URL: https://www.microsoft.com/en-us/research/publication/

palette-load-balancing-locality-hints-for-serverless-functions/.

[33] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. Firecracker: Lightweight

Virtualization for Serverless Applications. In 17th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 20), pages 419–434, 2020.

[34] Nabeel Akhtar, Ali Raza, Vatche Ishakian, and Ibrahim Matta. COSE: Config-

uring Serverless Functions using Statistical Learning. In IEEE INFOCOM 2020

- IEEE Conference on Computer Communications, pages 129–138, July 2020.

ISSN: 2641-9874. doi:10.1109/INFOCOM41043.2020.9155363.

[35] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke, An-

dre Beck, Paarijaat Aditya, and Volker Hilt. SAND: Towards High-Performance

Serverless Computing. USENIX ATC, page 14, 2018.

188

https://www.open-mpi.org/
https://www.open-mpi.org/
https://www.openstack.org/
https://www.openstack.org/
https://gvisor.dev/
https://www.microsoft.com/en-us/research/publication/palette-load-balancing-locality-hints-for-serverless-functions/
https://www.microsoft.com/en-us/research/publication/palette-load-balancing-locality-hints-for-serverless-functions/
https://doi.org/10.1109/INFOCOM41043.2020.9155363

[36] Georgios Alexopoulos and Dimitris Mitropoulos. nvshare: Practical GPU Sharing

without Memory Size Constraints. 2023.

[37] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. BATCH: Ma-

chine Learning Inference Serving on Serverless Platforms with Adaptive Batch-

ing. In SC20: International Conference for High Performance Computing,

Networking, Storage and Analysis, pages 1–15, Atlanta, GA, USA, Novem-

ber 2020. IEEE. URL: https://ieeexplore.ieee.org/document/9355312/,

doi:10.1109/SC41405.2020.00073.

[38] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. Optimizing

inference serving on serverless platforms. Proceedings of the VLDB Endowment,

15(10), 2022.

[39] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg. Ground-

hog: Efficient Request Isolation in FaaS, May 2022. arXiv:2205.11458 [cs]. URL:

http://arxiv.org/abs/2205.11458.

[40] Pradeep Ambati, Íñigo Goiri, Felipe Frujeri, Alper Gun, Ke Wang, Brian Dolan,

Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh Elnikety, et al.

Providing slos for resource-harvesting vms in cloud platforms. In 14th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 20), pages

735–751, 2020.

[41] Sundar Anand, Annie Johnson, Priyanka Mathikshara, and R Karthik. Low

power real time GPS tracking enabled with RTOS and serverless architecture.

In 2019 IEEE 4th International Conference on Computer and Communication

Systems (ICCCS), pages 618–623. IEEE, 2019.

189

https://ieeexplore.ieee.org/document/9355312/
https://doi.org/10.1109/SC41405.2020.00073
http://arxiv.org/abs/2205.11458

[42] Lixiang Ao, Liz Izhikevich, Geoffrey M Voelker, and George Porter. Sprocket: A

serverless video processing framework. In Proceedings of the ACM Symposium

on Cloud Computing, pages 263–274, 2018.

[43] Lixiang Ao, George Porter, and Geoffrey M Voelker. FaaSnap: FaaS made

fast using snapshot-based VMs. In Proceedings of the Seventeenth European

Conference on Computer Systems, pages 730–746, 2022.

[44] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,

Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’keeffe, Mark L

Stillwell, et al. SCONE: Secure linux containers with intel SGX. In 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 16), pages

689–703, 2016.

[45] Gabriel Aumala, Edwin Boza, Luis Ortiz-Avilés, Gustavo Totoy, and Cristina

Abad. Beyond load balancing: Package-aware scheduling for serverless platforms.

In 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGRID), pages 282–291. IEEE, 2019.

[46] Gabriel Aumala, Edwin Boza, Luis Ortiz-Avilés, Gustavo Totoy, and Cristina

Abad. Beyond load balancing: Package-aware scheduling for serverless platforms.

In 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGRID), pages 282–291, 2019. doi:10.1109/CCGRID.2019.

00042.

[47] Arda Aytekin and Mikael Johansson. Harnessing the power of serverless runtimes

for large-scale optimization. arXiv preprint arXiv:1901.03161, 2019.

190

https://doi.org/10.1109/CCGRID.2019.00042
https://doi.org/10.1109/CCGRID.2019.00042

[48] Azure. Azure Functions, 2022. URL: https://azure.microsoft.com/en-

us/services/functions/.

[49] Marco Bacis, Rolando Brondolin, and Marco D Santambrogio. BlastFunction:

an FPGA-as-a-service system for accelerated serverless computing. In 2020

Design, Automation & Test in Europe Conference & Exhibition (DATE), pages

852–857. IEEE, 2020.

[50] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo,

Abdurrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and

Saman Amarasinghe. Tiramisu: A polyhedral compiler for expressing fast

and portable code. In 2019 IEEE/ACM International Symposium on Code

Generation and Optimization (CGO), pages 193–205. IEEE, 2019.

[51] Bharathan Balaji, Christopher Kakovitch, and Balakrishnan Narayanaswamy.

FirePlace: Placing Firecraker Virtual Machines with Hindsight Imitation. Pro-

ceedings of Machine Learning and Systems, 3:652–663, 2021.

[52] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex

Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of

virtualization. ACM SIGOPS operating systems review, 37(5):164–177, 2003.

[53] Soumya Basu, Aditya Sundarrajan, Javad Ghaderi, Sanjay Shakkottai, and

Ramesh Sitaraman. Adaptive TTL-based caching for content delivery. In

Proceedings of the 2017 ACM SIGMETRICS/International Conference on Mea-

surement and Modeling of Computer Systems, pages 45–46, 2017.

[54] Rohan Basu Roy, Tirthak Patel, Richmond Liew, Yadu Nand Babuji, Ryan

191

https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/

Chard, and Devesh Tiwari. ProPack: Executing Concurrent Serverless Functions

Faster and Cheaper. In Proceedings of the 32nd International Symposium on

High-Performance Parallel and Distributed Computing, pages 211–224, 2023.

[55] Muli Ben-Yehuda, Michael D Day, Zvi Dubitzky, Michael Factor, Nadav Har’El,

Abel Gordon, Anthony Liguori, Orit Wasserman, and Ben-Ami Yassour. The

turtles project: Design and implementation of nested virtualization. In 9th

USENIX Symposium on Operating Systems Design and Implementation (OSDI

10), 2010.

[56] Michael A Bender, Soumen Chakrabarti, and Sambavi Muthukrishnan. Flow and

Stretch Metrics for Scheduling Continuous Job Streams. In SODA, volume 98,

pages 270–279, 1998.

[57] Priscilla Benedetti, Mauro Femminella, Gianluca Reali, and Kris Steenhaut.

Experimental analysis of the application of serverless computing to IoT platforms.

Sensors, 21(3):928, 2021.

[58] Muhammad Bilal, Marco Canini, Rodrigo Fonseca, and Rodrigo Rodrigues.

With great freedom comes great opportunity: Rethinking resource allocation for

serverless functions. CoRR, abs/2105.14845, 2021.

[59] Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded compu-

tations by work stealing. Journal of the ACM (JACM), 46(5):720–748, 1999.

[60] Rodrigo Bruno, Serhii Ivanenko, Sutao Wang, Jovan Stevanovic, and Vojin

192

Jovanovic. Graalvisor: Virtualized Polyglot Runtime for Serverless Appli-

cations, 2022. URL: https://arxiv.org/abs/2212.10131, doi:10.48550/

ARXIV.2212.10131.

[61] Xinquan Cai, Qianlong Sang, Chuang Hu, Yili Gong, Kun Suo, Xiaobo Zhou,

and Dazhao Cheng. Incendio: Priority-based Scheduling for Alleviating Cold

Start in Serverless Computing. IEEE Transactions on Computers, 2024.

[62] Pei Cao and Sandy Irani. Cost-Aware WWW Proxy Caching Algorithms. In

Proceedings of the USENIX Symposium on Internet Technologies and Systems,

page 15, 1997.

[63] Devin Carraway. Lookbusy – a synthetic load generator. http://www.devin.

com/lookbusy/.

[64] Joao Carreira, Sumer Kohli, Rodrigo Bruno, and Pedro Fonseca. From warm

to hot starts: leveraging runtimes for the serverless era. In Proceedings of the

Workshop on Hot Topics in Operating Systems, pages 58–64, 2021.

[65] Benjamin Carver, Jingyuan Zhang, Ao Wang, and Yue Cheng. In Search of a

Fast and Efficient Serverless DAG Engine. arXiv:1910.05896 [cs], October 2019.

arXiv: 1910.05896. URL: http://arxiv.org/abs/1910.05896.

[66] Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna Woodard,

Ben Blaiszik, Ian Foster, and Kyle Chard. FuncX: A Federated Function

Serving Fabric for Science. In Proceedings of the 29th International Symposium

on High-Performance Parallel and Distributed Computing, HPDC ’20, page

193

https://arxiv.org/abs/2212.10131
https://doi.org/10.48550/ARXIV.2212.10131
https://doi.org/10.48550/ARXIV.2212.10131
http://www.devin.com/lookbusy/
http://www.devin.com/lookbusy/
http://arxiv.org/abs/1910.05896

65–76, New York, NY, USA, 2020. Association for Computing Machinery. doi:

10.1145/3369583.3392683.

[67] J. Chase, D. Irwin, L. Grit, J. Moore, and S. Sprenkle. Dynamic virtual clusters

in a grid site manager. In IEEE International Symposium on High Performance

Distributed Computing (HPDC), 2003.

[68] Hao Che, Ye Tung, and Zhijun Wang. Hierarchical web caching systems:

Modeling, design and experimental results. IEEE journal on Selected Areas in

Communications, 20(7):1305–1314, 2002.

[69] Chen Chen, Manuel Herrera, Ge Zheng, Liqiao Xia, Zhengyang Ling, and Jiang-

tao Wang. Cross-Edge Orchestration of Serverless Functions with Probabilistic

Caching. IEEE Transactions on Services Computing, 2024.

[70] Guoyang Chen, Yue Zhao, Xipeng Shen, and Huiyang Zhou. Effisha: A software

framework for enabling effficient preemptive scheduling of gpu. In Proceedings

of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 3–16, 2017.

[71] John Chen, Benjamin Coleman, and Anshumali Shrivastava. Revisiting Consis-

tent Hashing with Bounded Loads. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 35, pages 3976–3983, 2021.

[72] Bin Cheng, Jonathan Fuerst, Gurkan Solmaz, and Takuya Sanada. Fog func-

tion: Serverless fog computing for data intensive iot services. In 2019 IEEE

International Conference on Services Computing (SCC), pages 28–35. IEEE,

2019.

194

https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3369583.3392683

[73] Kai Cheng and Yahiko Kambayashi. LRU-SP: a size-adjusted and popularity-

aware LRU replacement algorithm for web caching. In Proceedings 24th Annual

International Computer Software and Applications Conference. COMPSAC2000,

pages 48–53. IEEE, 2000.

[74] Ludmila Cherkasova. Improving WWW Proxies Performance with Greedy-

Dual-Size-Frequency Caching Policy. In HP Labs Technical Report 98-69 (R.1),

1998.

[75] Ludmila Cherkasova and Gianfranco Ciardo. Role of Aging, Frequency, and

Size in Web Cache Replacement Policies. In G. Goos, J. Hartmanis, J. van

Leeuwen, Bob Hertzberger, Alfons Hoekstra, and Roy Williams, editors, High-

Performance Computing and Networking, volume 2110, pages 114–123. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2001. Series Title: Lecture Notes in

Computer Science. URL: http://link.springer.com/10.1007/3-540-48228-

8_12, doi:10.1007/3-540-48228-8_12.

[76] Ludmila Cherkasova and Gianfranco Ciardo. Role of aging, frequency, and

size in web cache replacement policies. In International Conference on High-

Performance Computing and Networking, pages 114–123. Springer, 2001.

[77] Saurav Chhatrapati. Towards Achieving Stronger Isolation in Serverless Com-

puting. 2021.

[78] Sean Choi, Muhammad Shahbaz, Balaji Prabhakar, and Mendel Rosenblum.

λ-nic: Interactive serverless compute on programmable smartnics. In 2020 IEEE

40th International Conference on Distributed Computing Systems (ICDCS),

pages 67–77. IEEE, 2020.

195

http://link.springer.com/10.1007/3-540-48228-8_12
http://link.springer.com/10.1007/3-540-48228-8_12
https://doi.org/10.1007/3-540-48228-8_12

[79] Claudio Cicconetti, Marco Conti, and Andrea Passarella. A decentralized frame-

work for serverless edge computing in the internet of things. IEEE Transactions

on Network and Service Management, 18(2):2166–2180, 2020.

[80] Alibaba Cloud. Alibaba Cloud Function Compute, 2023. URL: https://www.

alibabacloud.com/product/function-compute.

[81] Amazon Cloud. AWS Lambda, 2022. URL: https://aws.amazon.com/lambda/.

[82] Amazon Cloud. AWS Lambda Pricing, 2022. URL: https://aws.amazon.com/

lambda/pricing/.

[83] Google Cloud. Cloud Functions, 2022. URL: https://cloud.google.com/

functions/.

[84] Maxime C Cohen, Philipp W Keller, Vahab Mirrokni, and Morteza Zadimoghad-

dam. Overcommitment in cloud services: Bin packing with chance constraints.

Management Science, 65(7):3255–3271, 2019.

[85] Marcin Copik, Roman Böhringer, Alexandru Calotoiu, and Torsten Hoefler.

FMI: Fast and cheap message passing for serverless functions. In Proceedings of

the 37th International Conference on Supercomputing, pages 373–385, 2023.

[86] Marcin Copik, Alexandru Calotoiu, Konstantin Taranov, and Torsten Hoefler.

FaasKeeper: a Blueprint for Serverless Services. arXiv preprint arXiv:2203.14859,

2022.

[87] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fon-

toura, and Ricardo Bianchini. Resource central: Understanding and predicting

196

https://www.alibabacloud.com/product/function-compute
https://www.alibabacloud.com/product/function-compute
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://cloud.google.com/functions/
https://cloud.google.com/functions/

workloads for improved resource management in large cloud platforms. In Pro-

ceedings of the 26th Symposium on Operating Systems Principles, pages 153–167,

2017.

[88] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. Xanadu: Mitigating

Cascading Cold Starts in Serverless Function Chain Deployments. In Proceedings

of the 21st International Middleware Conference, Middleware ’20, pages 356–

–370, New York, NY, USA, 2020. Association for Computing Machinery. doi:

10.1145/3423211.3425690.

[89] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. Speedo: Fast dispatch

and orchestration of serverless workflows. In Proceedings of the ACM Symposium

on Cloud Computing, pages 585–599, 2021.

[90] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. Dynamo: Amazon’s highly available key-value store. ACM

SIGOPS operating systems review, 41(6):205–220, 2007.

[91] Christina Delimitrou, Nick Bambos, and Christos Kozyrakis. QoS-Aware ad-

mission control in heterogeneous datacenters. In International Conference on

Autonomic Computing (ICAC), 2013.

[92] Yaozu Dong, Zhao Yu, and Greg Rose. SR-IOV Networking in Xen: Architecture,

Design and Implementation. In Workshop on I/O Virtualization, volume 2,

2008.

[93] Jesse Donkervliet, Javier Ron, Junyan Li, Tiberiu Iancu, Cristina L Abad,

197

https://doi.org/10.1145/3423211.3425690
https://doi.org/10.1145/3423211.3425690

and Alexandru Iosup. Servo: Increasing the Scalability of Modifiable Virtual

Environments Using Serverless Computing.

[94] Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and Haibo

Chen. Serverless computing on heterogeneous computers. In Proceedings of the

27th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 797–813, 2022.

[95] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin,

Qixuan Wu, and Haibo Chen. Catalyzer: Sub-millisecond startup for serverless

computing with initialization-less booting. In Proceedings of the Twenty-Fifth

International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 467–481, 2020.

[96] José Duato, Antonio J Pena, Federico Silla, Rafael Mayo, and Enrique S

Quintana-Ort́ı. rCUDA: Reducing the number of GPU-based accelerators in high

performance clusters. In 2010 International Conference on High Performance

Computing & Simulation, pages 224–231. IEEE, 2010.

[97] Vojislav Dukic, Rodrigo Bruno, Ankit Singla, and Gustavo Alonso. Photons:

Lambdas on a diet. In Proceedings of the 11th ACM Symposium on Cloud

Computing, pages 45–59, 2020.

[98] Ana Ebrahimi, Mostafa Ghobaei-Arani, and Hadi Saboohi. Cold Start Latency

Mitigation Mechanisms in Serverless Computing: Taxonomy, Review, and Future

Directions. Journal of Systems Architecture, page 103115, 2024.

198

[99] Gil Einziger, Roy Friedman, and Ben Manes. Tinylfu: A highly efficient cache

admission policy. ACM Transactions on Storage (ToS), 13(4):1–31, 2017.

[100] Simon Eismann, Long Bui, Johannes Grohmann, Cristina Abad, Nikolas Herbst,

and Samuel Kounev. Sizeless: Predicting the optimal size of serverless functions.

In Proceedings of the 22nd International Middleware Conference, pages 248–259,

2021.

[101] Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Johannes

Grohmann, Nikolas Herbst, Cristina L. Abad, and Alexandru Iosup. Serverless

applications: Why, when, and how? IEEE Softw., 38(1), 2021.

[102] Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Johannes

Grohmann, Nikolas Herbst, Cristina Abad, and Alexandru Iosup. The state of

serverless applications: Collection, characterization, and community consensus.

IEEE Transactions on Software Engineering, 2021.

[103] Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Johannes

Grohmann, Nikolas Herbst, Cristina L Abad, and Alexandru Iosup. Serverless

applications: Why, when, and how? IEEE Software, 38(1):32–39, 2020.

[104] Unai Elordi, Luis Unzueta, Jon Goenetxea, Est́ıbaliz Loyo, Ignacio Arganda-

Carreras, and Oihana Otaegui. On-demand Serverless Video Surveillance with

Optimal Deployment of Deep Neural Networks. In VISIGRAPP (4: VISAPP),

pages 717–723, 2021.

[105] Jonatan Enes, Roberto R Expósito, and Juan Touriño. Real-time resource

199

scaling platform for big data workloads on serverless environments. Future

Generation Computer Systems, 105:361–379, 2020.

[106] Kevin Exton and Maria Read. Raptor: Distributed Scheduling for Serverless

Functions. arXiv preprint arXiv:2403.16457, 2024.

[107] Henrique Fingler, Zhiting Zhu, Esther Yoon, Zhipeng Jia, Emmett Witchel,

and Christopher J Rossbach. Dgsf: Disaggregated gpus for serverless functions.

In 2022 IEEE International Parallel and Distributed Processing Symposium

(IPDPS), pages 739–750. IEEE, 2022.

[108] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Chris-

tos Kozyrakis, Matei Zaharia, and Keith Winstein. From laptop to lambda:

Outsourcing everyday jobs to thousands of transient functional containers. In

2019 USENIX annual technical conference (USENIX ATC 19), pages 475–488,

2019.

[109] Yuqi Fu, Li Liu, Haoliang Wang, Yue Cheng, and Songqing Chen. SFS: Smart

OS Scheduling for Serverless Functions. In 2022 SC22: International Conference

for High Performance Computing, Networking, Storage and Analysis (SC), pages

584–599. IEEE Computer Society, 2022.

[110] Alexander Fuerst, Ahmed Ali-Eldin, Prashant Shenoy, and Prateek Sharma.

Cloud-Scale VM-Deflation for Running Interactive Applications On Tran-

sient Servers. In Proceedings of the 29th International Symposium on High-

Performance Parallel and Distributed Computing, pages 53–64, 2020.

[111] Alexander Fuerst, Stanko Novaković, Íñigo Goiri, Gohar Irfan Chaudhry, Prateek

200

Sharma, Kapil Arya, Kevin Broas, Eugene Bak, Mehmet Iyigun, and Ricardo

Bianchini. Memory-harvesting VMs in cloud platforms. In Proceedings of the

27th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 583–594, 2022.

[112] Alexander Fuerst, Abdul Rehman, and Prateek Sharma. Ilúvatar: A Fast

Control Plane for Serverless Computing. 2023.

[113] Alexander Fuerst and Prateek Sharma. FaasCache: Keeping Serverless Com-

puting Alive with Greedy-Dual Caching. In Proceedings of the 26th ACM

International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS 2021, pages 386—-400, New York, NY, USA,

2021. Association for Computing Machinery. doi:10.1145/3445814.3446757.

[114] Alexander Fuerst and Prateek Sharma. Locality-aware Load-Balancing For

Serverless Clusters. In Proceedings of the 31st International Symposium on

High-Performance Parallel and Distributed Computing, HPDC 2022, New York,

NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3502181.

3531459.

[115] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A Kozuch.

Autoscale: Dynamic, robust capacity management for multi-tier data centers.

ACM Transactions on Computer Systems (TOCS), 30(4):1–26, 2012.

[116] Bishakh Chandra Ghosh, Sourav Kanti Addya, Nishant Baranwal Somy,

Shubha Brata Nath, Sandip Chakraborty, and Soumya K. Ghosh. Caching

Techniques to Improve Latency in Serverless Architectures. arXiv:1911.07351

201

https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1145/3502181.3531459
https://doi.org/10.1145/3502181.3531459

[cs], November 2019. arXiv: 1911.07351. URL: http://arxiv.org/abs/1911.

07351.

[117] Dimitra Giantsidi, Emmanouil Giortamis, Nathaniel Tornow, Florin Dinu, and

Pramod Bhatotia. FlexLog: A Shared Log for Stateful Serverless Computing.

2023.

[118] Pablo Gimeno Sarroca and Marc Sánchez-Artigas. MLLess: Achieving Cost

Efficiency in Serverless Machine Learning Training. arXiv e-prints, pages arXiv–

2206, 2022.

[119] Samuel Ginzburg, Mohammad Shahrad, Michael J Freedman, Zhaoduo Wen,

Sidharth Kumar, Binyu Zang, Ken Gordon, Xiaochuan Tang, Balaji Vembu,

Zbigniew T Kalbarczyk, et al. VectorVisor: A Binary Translation Scheme for

Throughput-OrientedGPU Acceleration. In 2023 USENIX Annual Technical

Conference (USENIX ATC 23), pages 1017–1037, 2023.

[120] Jianfeng Gu, Yichao Zhu, Puxuan Wang, Mohak Chadha, and Michael Gerndt.

FaST-GShare: Enabling Efficient Spatio-Temporal GPU Sharing in Serverless

Computing for Deep Learning Inference. In Proceedings of the 52nd International

Conference on Parallel Processing, pages 635–644, 2023.

[121] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir

Vigfusson, and Jonathan Mace. Serving $DNNs$ like clockwork: Performance

predictability from the bottom up. In 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 20), pages 443–462, 2020.

[122] Anubhav Guleria, J Lakshmi, and Chakri Padala. EMF: Disaggregated GPUs in

202

http://arxiv.org/abs/1911.07351
http://arxiv.org/abs/1911.07351

datacenters for efficiency, modularity and flexibility. In 2019 IEEE International

Conference on Cloud Computing in Emerging Markets (CCEM), pages 1–8.

IEEE, 2019.

[123] Yi Guo, Jisheng Zhao, Vincent Cave, and Vivek Sarkar. Slaw: a scalable locality-

aware adaptive work-stealing scheduler for multi-core systems. In Proceedings

of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 341–342, 2010.

[124] Zhiyuan Guo, Zachary Blanco, Mohammad Shahrad, Zerui Wei, Bili Dong, Jin-

mou Li, Ishaan Pota, Harry Xu, and Yiying Zhang. Decomposing and Executing

Serverless Applications as Resource Graphs, December 2022. arXiv:2206.13444

[cs]. URL: http://arxiv.org/abs/2206.13444.

[125] Varun Gupta, Mor Harchol Balter, Karl Sigman, and Ward Whitt. Analysis of

join-the-shortest-queue routing for web server farms. Performance Evaluation,

64(9-12):1062–1081, 2007.

[126] Adam Hall and Umakishore Ramachandran. An execution model for serverless

functions at the edge. In Proceedings of the International Conference on Internet

of Things Design and Implementation - IoTDI ’19, pages 225–236, Montreal,

Quebec, Canada, 2019. ACM Press. URL: http://dl.acm.org/citation.cfm?

doid=3302505.3310084, doi:10.1145/3302505.3310084.

[127] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. Microsecond-scale

preemption for concurrent $GPU − accelerated$$DNN$ inferences. In 16th

USENIX Symposium on Operating Systems Design and Implementation (OSDI

22), pages 539–558, 2022.

203

http://arxiv.org/abs/2206.13444
http://dl.acm.org/citation.cfm?doid=3302505.3310084
http://dl.acm.org/citation.cfm?doid=3302505.3310084
https://doi.org/10.1145/3302505.3310084

[128] Hassan B Hassan, Saman A Barakat, and Qusay I Sarhan. Survey on serverless

computing. Journal of Cloud Computing, 10(1):1–29, 2021.

[129] Mohammad Hedayati, Kai Shen, Michael L Scott, and Mike Marty. $Multi−

Queue$ Fair Queuing. In 2019 USENIX Annual Technical Conference (USENIX

ATC 19), pages 301–314, 2019.

[130] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran

Venkataramani, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Server-

less computation with openlambda. In 8th USENIX workshop on hot topics in

cloud computing (HotCloud 16), 2016.

[131] Cheol-Ho Hong, Ivor Spence, and Dimitrios S Nikolopoulos. GPU virtualization

and scheduling methods: A comprehensive survey. ACM Computing Surveys

(CSUR), 50(3):1–37, 2017.

[132] Justin Hu, Ariana Bruno, Brian Ritchken, Brendon Jackson, Mateo Espinosa,

Aditya Shah, and Christina Delimitrou. HiveMind: A scalable and serverless

coordination control platform for UAV swarms. arXiv preprint arXiv:2002.01419,

2020.

[133] Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo, Chen Ding, and Zhenlin

Wang. Kinetic modeling of data eviction in cache. In 2016 USENIX Annual

Technical Conference (USENIX ATC 16), pages 351–364, 2016.

[134] Ling-Hong Hung, Dimitar Kumanov, Xingzhi Niu, Wes Lloyd, and Ka Yee Yeung.

Rapid RNA sequencing data analysis using serverless computing. bioRxiv, page

576199, 2019.

204

[135] Erika Hunhoff, Shazal Irshad, Vijay Thurimella, Ali Tariq, and Eric Rozner.

Proactive Serverless Function Resource Management. In Proceedings of the 2020

Sixth International Workshop on Serverless Computing, pages 61–66, 2020.

[136] Razin Farhan Hussain, Mohsen Amini Salehi, and Omid Semiari. Serverless edge

computing for green oil and gas industry. In 2019 IEEE Green Technologies

Conference (GreenTech), pages 1–4. IEEE, 2019.

[137] Sitaram Iyer and Peter Druschel. Anticipatory scheduling: A disk scheduling

framework to overcome deceptive idleness in synchronous I/O. In Proceedings of

the eighteenth ACM symposium on Operating systems principles, pages 117–130,

2001.

[138] Yuekai Jia, Shuang Liu, Wenhao Wang, Yu Chen, Zhengde Zhai, Shoumeng Yan,

and Zhengyu He. HyperEnclave: An Open and Cross-platform Trusted Execution

Environment. In 2022 USENIX Annual Technical Conference (USENIX ATC

22), pages 437–454, 2022.

[139] Zhipeng Jia and Emmett Witchel. Nightcore: efficient and scalable serverless

computing for latency-sensitive, interactive microservices. In Proceedings of the

26th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 152–166, 2021.

[140] Bo Jiang, Philippe Nain, and Don Towsley. On the convergence of the ttl

approximation for an lru cache under independent stationary request processes.

ACM Transactions on Modeling and Performance Evaluation of Computing

Systems (TOMPECS), 3(4):1–31, 2018.

205

[141] Aji John, Kristiina Ausmees, Kathleen Muenzen, Catherine Kuhn, and Amanda

Tan. SWEEP: Accelerating Scientific Research Through Scalable Serverless

Workflows. In Proceedings of the 12th IEEE/ACM International Conference

on Utility and Cloud Computing Companion - UCC ’19 Companion, pages

43–50, Auckland, New Zealand, 2019. ACM Press. URL: http://dl.acm.org/

citation.cfm?doid=3368235.3368839, doi:10.1145/3368235.3368839.

[142] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.

Occupy the cloud: Distributed computing for the 99%. In Proceedings of the

2017 symposium on cloud computing, pages 445–451, 2017.

[143] Justin San Juan and Bernard Wong. Reducing the Cost of GPU Cold Starts in

Serverless Deep Learning Inference Serving. In 2023 IEEE International Con-

ference on Pervasive Computing and Communications Workshops and other Af-

filiated Events (PerCom Workshops), pages 225–230, Atlanta, GA, USA, March

2023. IEEE. URL: https://ieeexplore.ieee.org/document/10150381/,

doi:10.1109/PerComWorkshops56833.2023.10150381.

[144] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David

Mazières, and Christos Kozyrakis. Shinjuku: Preemptive scheduling for µ

second-scale tail latency. In 16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 19), pages 345–360, 2019.

[145] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. Centralized

Core-granular Scheduling for Serverless Functions. In Proceedings of the ACM

206

http://dl.acm.org/citation.cfm?doid=3368235.3368839
http://dl.acm.org/citation.cfm?doid=3368235.3368839
https://doi.org/10.1145/3368235.3368839
https://ieeexplore.ieee.org/document/10150381/
https://doi.org/10.1109/PerComWorkshops56833.2023.10150381

Symposium on Cloud Computing, pages 158–164, Santa Cruz CA USA, Novem-

ber 2019. ACM. URL: https://dl.acm.org/doi/10.1145/3357223.3362709,

doi:10.1145/3357223.3362709.

[146] Kostis Kaffes, Neeraja J Yadwadkar, and Christos Kozyrakis. Practical Schedul-

ing for Real-World Serverless Computing. arXiv preprint arXiv:2111.07226,

2021.

[147] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. Hermod: prin-

cipled and practical scheduling for serverless functions. In Proceedings of the

13th Symposium on Cloud Computing, pages 289–305, San Francisco California,

November 2022. ACM. URL: https://dl.acm.org/doi/10.1145/3542929.

3563468, doi:10.1145/3542929.3563468.

[148] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine,

and Daniel Lewin. Consistent hashing and random trees: Distributed caching

protocols for relieving hot spots on the world wide web. In Proceedings of the

twenty-ninth annual ACM symposium on Theory of computing, pages 654–663,

1997.

[149] David Karger, Alex Sherman, Andy Berkheimer, Bill Bogstad, Rizwan Dhanidina,

Ken Iwamoto, Brian Kim, Luke Matkins, and Yoav Yerushalmi. Web caching

with consistent hashing. Computer Networks, 31(11-16):1203–1213, 1999.

[150] Dong Kyoung Kim and Hyun-Gul Roh. Scheduling Containers Rather Than

Functions for Function-as-a-Service. In 2021 IEEE/ACM 21st International

Symposium on Cluster, Cloud and Internet Computing (CCGrid), pages 465–474,

May 2021. doi:10.1109/CCGrid51090.2021.00056.

207

https://dl.acm.org/doi/10.1145/3357223.3362709
https://doi.org/10.1145/3357223.3362709
https://dl.acm.org/doi/10.1145/3542929.3563468
https://dl.acm.org/doi/10.1145/3542929.3563468
https://doi.org/10.1145/3542929.3563468
https://doi.org/10.1109/CCGrid51090.2021.00056

[151] Jaewook Kim, Tae Joon Jun, Daeyoun Kang, Dohyeun Kim, and Daeyoung

Kim. GPU Enabled Serverless Computing Framework. In 2018 26th Eu-

romicro International Conference on Parallel, Distributed and Network-based

Processing (PDP), pages 533–540, Cambridge, March 2018. IEEE. URL:

https://ieeexplore.ieee.org/document/8374513/, doi:10.1109/PDP2018.

2018.00090.

[152] Jeongchul Kim and Kyungyong Lee. FunctionBench: A Suite of Workloads for

Serverless Cloud Function Service. In 2019 IEEE 12th International Conference

on Cloud Computing (CLOUD), pages 502–504, July 2019. ISSN: 2159-6182.

doi:10.1109/CLOUD.2019.00091.

[153] Jeongchul Kim and Kyungyong Lee. Functionbench: A suite of workloads for

serverless cloud function service. In 2019 IEEE 12th International Conference

on Cloud Computing (CLOUD), pages 502–504. IEEE, 2019.

[154] Jiho Kim, John Kim, and Yongjun Park. Navigator: Dynamic multi-kernel

scheduling to improve GPU performance. In 2020 57th ACM/IEEE Design

Automation Conference (DAC), pages 1–6. IEEE, 2020.

[155] Seong-Joong Kim, Myoungsung You, Byung Joon Kim, and Seungwon Shin.

Cryonics: Trustworthy Function-as-a-Service using Snapshot-based Enclaves. In

Proceedings of the 2023 ACM Symposium on Cloud Computing, pages 528–543,

2023.

[156] Konstantinos Konstantoudakis, David Breitgand, Alexandros Doumanoglou,

Nikolaos Zioulis, Avi Weit, Kyriaki Christaki, Petros Drakoulis, Emmanouil

Christakis, Dimitrios Zarpalas, and Petros Daras. Serverless streaming for

208

https://ieeexplore.ieee.org/document/8374513/
https://doi.org/10.1109/PDP2018.2018.00090
https://doi.org/10.1109/PDP2018.2018.00090
https://doi.org/10.1109/CLOUD.2019.00091

emerging media: towards 5G network-driven cost optimization: A real-time

adaptive streaming FaaS service for small-session-oriented immersive media.

Multimedia Tools and Applications, pages 1–40, 2022.

[157] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu. Faast-

lane: Accelerating Function-as-a-Service Workflows. In 2021 USENIX Annual

Technical Conference (USENIXATC 21), pages 805–820, 2021.

[158] Dimitar Kumanov, Ling-Hong Hung, Wes Lloyd, and Ka Yee Yeung. Serverless

computing provides on-demand high performance computing for biomedical

research. arXiv preprint arXiv:1807.11659, 2018.

[159] Gunho Lee and Randy Katz. Heterogeneity-Aware resource allocation and

scheduling in the cloud. In USENIX Workshop on Hot Topics in Cloud Com-

puting (HotCloud), 2011.

[160] Youngsoo Lee and Sunghee Choi. A Greedy Load Balancing Algorithm on

Serverless Platforms Maximizing Locality.

[161] Baolin Li, Tirthak Patel, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari.

Miso: exploiting multi-instance gpu capability on multi-tenant gpu clusters. In

Proceedings of the 13th Symposium on Cloud Computing, pages 173–189, 2022.

[162] Xue Li, Peng Kang, Jordan Molone, Wei Wang, and Palden Lama. KneeScale:

Efficient resource scaling for serverless computing at the edge. In 2022 22nd

IEEE International Symposium on Cluster, Cloud and Internet Computing

(CCGrid), pages 180–189. IEEE, 2022.

209

[163] Zijun Li, Linsong Guo, Jiagan Cheng, Quan Chen, BingSheng He, and Minyi

Guo. The Serverless Computing Survey: A Technical Primer for Design Archi-

tecture. ACM Computing Surveys, Jan 2022. URL: http://dx.doi.org/10.

1145/3508360, doi:10.1145/3508360.

[164] Chun-Xun Lin, Tsung-Wei Huang, and Martin DF Wong. An efficient work-

stealing scheduler for task dependency graph. In 2020 IEEE 26th international

conference on parallel and distributed systems (ICPADS), pages 64–71. IEEE,

2020.

[165] Ping-Min Lin and Alex Glikson. Mitigating Cold Starts in Serverless Platforms:

A Pool-Based Approach. arXiv:1903.12221 [cs], March 2019. arXiv: 1903.12221.

URL: http://arxiv.org/abs/1903.12221.

[166] Locust. Locust: A modern load testing framework. https://locust.io/.

[167] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj

Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft.

Unikernels: Library Operating Systems for the Cloud. In Proceedings of the

Eighteenth International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’13, pages 461–472, New York, NY,

USA, 2013. ACM. URL: http://doi.acm.org/10.1145/2451116.2451167,

doi:10.1145/2451116.2451167.

[168] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Eshaan Minocha,

Sameh Elnikety, Saurabh Bagchi, and Somali Chaterji. WISEFUSE: Workload

Characterization and DAG Transformation for Serverless Workflows. Proceedings

of the ACM on Measurement and Analysis of Computing Systems, 6(2):1–28,

210

http://dx.doi.org/10.1145/3508360
http://dx.doi.org/10.1145/3508360
https://doi.org/10.1145/3508360
http://arxiv.org/abs/1903.12221
https://locust.io/
http://doi.acm.org/10.1145/2451116.2451167
https://doi.org/10.1145/2451116.2451167

May 2022. URL: https://dl.acm.org/doi/10.1145/3530892, doi:10.1145/

3530892.

[169] Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya. A Holis-

tic View on Resource Management in Serverless Computing Environments:

Taxonomy, and Future Directions. arXiv preprint arXiv:2105.11592, 2021.

[170] Johannes Manner, Martin EndreB, Tobias Heckel, and Guido Wirtz. Cold Start

Influencing Factors in Function as a Service. In 2018 IEEE/ACM International

Conference on Utility and Cloud Computing Companion (UCC Companion),

pages 181–188, Zurich, December 2018. IEEE. URL: https://ieeexplore.

ieee.org/document/8605777/, doi:10.1109/UCC-Companion.2018.00054.

[171] Nimrod Megiddo and Dharmendra S Modha. ARC: A Self-Tuning, Low Overhead

Replacement Cache. In USENIX FAST, volume 3, pages 115–130, 2003.

[172] Muhammed Oguzhan Mete and Tahsin Yomralioglu. Implementation of serverless

cloud GIS platform for land valuation. International Journal of Digital Earth,

14(7):836–850, 2021.

[173] Vahab Mirrokni, Mikkel Thorup, and Morteza Zadimoghaddam. Consistent

hashing with bounded loads. In Proceedings of the Twenty-Ninth Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 587–604. SIAM, 2018.

[174] Zizhao Mo, Huanle Xu, and Wing Cheong Lau. Optimal Resource Efficiency

with Fairness in Heterogeneous GPU Clusters, March 2024. arXiv:2403.18545

[cs]. URL: http://arxiv.org/abs/2403.18545.

211

https://dl.acm.org/doi/10.1145/3530892
https://doi.org/10.1145/3530892
https://doi.org/10.1145/3530892
https://ieeexplore.ieee.org/document/8605777/
https://ieeexplore.ieee.org/document/8605777/
https://doi.org/10.1109/UCC-Companion.2018.00054
http://arxiv.org/abs/2403.18545

[175] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti, Naren

Nayak, and Vadim Sukhomlinov. Agile cold starts for scalable serverless. In 11th

USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19), 2019.

[176] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti, Vadim

Sukhomlinov, and Naren Nayak. Agile Cold Starts for Scalable Serverless.

USENIX Workshop on Hot Topics in Cloud Computing (HotCloud), page 6,

2019.

[177] William S. Moses, Ivan R. Ivanov, Jens Domke, Toshio Endo, Johannes Doerfert,

and Oleksandr Zinenko. High-Performance GPU-to-CPU Transpilation and

Optimization via High-Level Parallel Constructs. In Proceedings of the 28th

ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel

Programming, PPoPP ’23, page 119–134, New York, NY, USA, 2023. Association

for Computing Machinery. doi:10.1145/3572848.3577475.

[178] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale, Stéphane

Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim Wood, Daniel

Hagimont, et al. OFC: an opportunistic caching system for FaaS platforms. In

Proceedings of the Sixteenth European Conference on Computer Systems, pages

228–244, 2021.

[179] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney.

Producing Wrong Data without Doing Anything Obviously Wrong! In Pro-

ceedings of the 14th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS XIV, page 265–276,

212

https://doi.org/10.1145/3572848.3577475

New York, NY, USA, 2009. ACM, Association for Computing Machinery.

doi:10.1145/1508244.1508275.

[180] Diana M Naranjo, Sebastián Risco, Carlos de Alfonso, Alfonso Pérez, Ignacio

Blanquer, and Germán Moltó. Accelerated serverless computing based on GPU

virtualization. Journal of Parallel and Distributed Computing, 139:32–42, 2020.

[181] Kelvin KW Ng, Henri Maxime Demoulin, and Vincent Liu. Paella: Low-latency

Model Serving with Software-defined GPU Scheduling. In Proceedings of the

29th Symposium on Operating Systems Principles, pages 595–610, 2023.

[182] Hai Duc Nguyen, Chaojie Zhang, Zhujun Xiao, and Andrew Chien. Real-

time serverless: Enabling application performance guarantees. In International

Workshop on Serverless Computing (WoSC), 2019.

[183] Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun. The akamai network: a

platform for high-performance internet applications. ACM SIGOPS Operating

Systems Review, 44(3):2–19, 2010.

[184] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea C

Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. SOCK: Rapid Task Provisioning

with Serverless-Optimized Containers. USENIX ATC:14, 2018.

[185] Elizabeth J O’neil, Patrick E O’neil, and Gerhard Weikum. The LRU-K page

replacement algorithm for database disk buffering. Acm Sigmod Record, 22(2):297–

306, 1993.

[186] Andrei Palade, Aqeel Kazmi, and Siobhán Clarke. An evaluation of open source

serverless computing frameworks support at the edge. In 2019 IEEE World

213

https://doi.org/10.1145/1508244.1508275

Congress on Services (SERVICES), volume 2642-939X, pages 206–211, 2019.

doi:10.1109/SERVICES.2019.00057.

[187] Nathan Pemberton, Anton Zabreyko, Zhoujie Ding, Randy Katz, and Joseph

Gonzalez. Kernel-as-a-Service: A Serverless Interface to GPUs. arXiv preprint

arXiv:2212.08146, 2022.

[188] Per Persson and Ola Angelsmark. Kappa: serverless iot deployment. In Proceed-

ings of the 2nd International Workshop on Serverless Computing, pages 16–21,

2017.

[189] Tobias Pfandzelter and David Bermbach. tinyFaaS: A Lightweight FaaS

Platform for Edge Environments. In 2020 IEEE International Conference

on Fog Computing (ICFC), pages 17–24, Sydney, Australia, April 2020.

IEEE. URL: https://ieeexplore.ieee.org/document/9103476/, doi:10.

1109/ICFC49376.2020.00011.

[190] Rajat Phull, Cheng-Hong Li, Kunal Rao, Hari Cadambi, and Srimat Chakradhar.

Interference-driven resource management for GPU-based heterogeneous clusters.

In Proceedings of the 21st international symposium on High-Performance Parallel

and Distributed Computing, pages 109–120, 2012.

[191] Lucian Popa, Ali Ghodsi, and Ion Stoica. HTTP as the narrow waist of

the future internet. In Proceedings of the 9th ACM SIGCOMM Workshop

on Hot Topics in Networks, pages 1–6, Monterey California, October 2010.

ACM. URL: https://dl.acm.org/doi/10.1145/1868447.1868453, doi:10.

1145/1868447.1868453.

214

https://doi.org/10.1109/SERVICES.2019.00057
https://ieeexplore.ieee.org/document/9103476/
https://doi.org/10.1109/ICFC49376.2020.00011
https://doi.org/10.1109/ICFC49376.2020.00011
https://dl.acm.org/doi/10.1145/1868447.1868453
https://doi.org/10.1145/1868447.1868453
https://doi.org/10.1145/1868447.1868453

[192] George Prekas, Marios Kogias, and Edouard Bugnion. Zygos: Achieving low

tail latency for microsecond-scale networked tasks. In Proceedings of the 26th

Symposium on Operating Systems Principles, pages 325–341, 2017.

[193] The Linux Foundation Projects. Open Container Initiative, 2015. URL: https:

//opencontainers.org/.

[194] Bart lomiej Przybylski, Pawe l Żuk, and Krzysztof Rzadca. Data-driven scheduling

in serverless computing to reduce response time. arXiv preprint arXiv:2105.03217,

2021.

[195] Haoran Qiu, Saurabh Jha, Subho S. Banerjee, Archit Patke, Chen Wang, Franke

Hubertus, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer. Is Function-as-a-

Service a good fit for latency-critical services? In International Workshop on

Serverless Computing (WoSC), 2021.

[196] Sebastián Quevedo, Freddy Merchán, Rafael Rivadeneira, and Federico X.

Dominguez. Evaluating Apache OpenWhisk - FaaS. In 2019 IEEE Fourth

Ecuador Technical Chapters Meeting (ETCM), pages 1–5, November 2019.

doi:10.1109/ETCM48019.2019.9014867.

[197] Ali Raza, Ibrahim Matta, Nabeel Akhtar, Vasiliki Kalavri, and Vatche Isahagian.

SoK: Function-As-A-Service: From An Application Developer’s Perspective.

Journal of Systems Research, 1(1), 2021.

[198] Burkhard Ringlein, François Abel, Dionysios Diamantopoulos, Beat Weiss,

215

https://opencontainers.org/
https://opencontainers.org/
https://doi.org/10.1109/ETCM48019.2019.9014867

Christoph Hagleitner, Marc Reichenbach, and Dietmar Fey. A case for function-

as-a-service with disaggregated FPGAs. In 2021 IEEE 14th International

Conference on Cloud Computing (CLOUD), pages 333–344. IEEE, 2021.

[199] Sebastián Risco and Germán Moltó. GPU-enabled serverless workflows for

efficient multimedia processing. Applied Sciences, 11(4):1438, 2021.

[200] Sashko Ristov, Christian Hollaus, and Mika Hautz. Colder Than the Warm

Start and Warmer Than the Cold Start! Experience the Spawn Start in FaaS

Providers. In Proceedings of the 2022 Workshop on Advanced Tools, Programming

Languages, and PLatforms for Implementing and Evaluating Algorithms for

Distributed Systems, ApPLIED ’22, page 35–39, New York, NY, USA, 2022.

Association for Computing Machinery. doi:10.1145/3524053.3542751.

[201] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna Gopa, Paul

Batum, Neeraja J Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis, and Ricardo

Bianchini. FaaT : A transparent auto-scaling cache for serverless applications. In

Proceedings of the ACM Symposium on Cloud Computing, pages 122–137, 2021.

[202] Francisco Romero, Mark Zhao, Neeraja J Yadwadkar, and Christos Kozyrakis.

Llama: A heterogeneous & serverless framework for auto-tuning video analytics

pipelines. In Proceedings of the ACM Symposium on Cloud Computing, pages

1–17, 2021.

[203] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. IceBreaker: warming

serverless functions better with heterogeneity. In Proceedings of the 27th ACM

International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 753–767, 2022.

216

https://doi.org/10.1145/3524053.3542751

[204] Gabriele Russo Russo, Valeria Cardellini, and Francesco Lo Presti. Serverless

functions in the cloud-edge continuum: Challenges and opportunities. In 2023

31st Euromicro International Conference on Parallel, Distributed and Network-

Based Processing (PDP), pages 321–328. IEEE, 2023.

[205] Rounak Saha, Anurag Satpathy, and Sourav Kanti Addya. FASE: fast deploy-

ment for dependent applications in serverless environments. The Journal of

Supercomputing, 80(8):10394–10417, 2024.

[206] Alireza Sahraei, Soteris Demetriou, Amirali Sobhgol, Haoran Zhang, Abhigna

Nagaraja, Neeraj Pathak, Girish Joshi, Carla Souza, Bo Huang, Wyatt Cook,

et al. XFaaS: Hyperscale and Low Cost Serverless Functions at Meta. In

Proceedings of the 29th Symposium on Operating Systems Principles, pages

231–246, 2023.

[207] Klaus Satzke, Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein,

Andre Beck, Paarijaat Aditya, Manohar Vanga, and Volker Hilt. Efficient GPU

Sharing for Serverless Workflows. In Proceedings of the 1st Workshop on High

Performance Serverless Computing, pages 17–24, 2020.

[208] Joel Scheuner, Simon Eismann, Sacheendra Talluri, Erwin van Eyk, Cristina

Abad, Philipp Leitner, and Alexandru Iosup. Let’s Trace It: Fine-Grained

Serverless Benchmarking using Synchronous and Asynchronous Orchestrated

Applications, May 2022. arXiv:2205.07696 [cs]. URL: http://arxiv.org/abs/

2205.07696.

[209] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. Architectural

Implications of Function-as-a-Service Computing. In Proceedings of the 52nd

217

http://arxiv.org/abs/2205.07696
http://arxiv.org/abs/2205.07696

Annual IEEE/ACM International Symposium on Microarchitecture, pages 1063–

1075, Columbus OH USA, October 2019. ACM. URL: https://dl.acm.org/

doi/10.1145/3352460.3358296, doi:10.1145/3352460.3358296.

[210] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul

Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich,

and Ricardo Bianchini. Serverless in the wild: Characterizing and optimizing

the serverless workload at a large cloud provider. In 2020 USENIX Annual

Technical Conference (USENIX ATC 20), pages 205–218, 2020.

[211] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul

Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich,

and Ricardo Bianchini. Serverless in the Wild: Characterizing and Optimizing

the Serverless Workload at a Large Cloud Provider. arXiv:2003.03423 [cs], June

2020. arXiv: 2003.03423. URL: http://arxiv.org/abs/2003.03423.

[212] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram Venkataraman,

Ion Stoica, Benjamin Recht, and Jonathan Ragan-Kelley. Numpywren: Serverless

linear algebra. arXiv preprint arXiv:1810.09679, 2018.

[213] Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan Pu, Benjamin Recht,

Ion Stoica, Jonathan Ragan-Kelley, Eric Jonas, and Shivaram Venkataraman.

Serverless linear algebra. In Proceedings of the 11th ACM Symposium on Cloud

Computing, pages 281–295, 2020.

[214] Prateek Sharma. Challenges and Opportunities in Sustainable Serverless Com-

puting. HotCarbon 2022: 1st Workshop on Sustainable Computer Systems

Design and Implementation.

218

https://dl.acm.org/doi/10.1145/3352460.3358296
https://dl.acm.org/doi/10.1145/3352460.3358296
https://doi.org/10.1145/3352460.3358296
http://arxiv.org/abs/2003.03423

[215] Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy. Resource Deflation:

A New Approach For Transient Resource Reclamation. In Proceedings of

the Fourteenth EuroSys Conference 2019, EuroSys ’19, pages 33:1–33:17, New

York, NY, USA, 2019. ACM. URL: http://doi.acm.org/10.1145/3302424.

3303945, doi:10.1145/3302424.3303945.

[216] Jiacheng Shen, Tianyi Yang, Yuxin Su, Yangfan Zhou, and Michael R Lyu.

Defuse: A Dependency-Guided Function Scheduler to Mitigate Cold Starts on

FaaS Platforms. In 2021 IEEE 41st International Conference on Distributed

Computing Systems (ICDCS), pages 194–204. IEEE, 2021.

[217] Jiacheng Shen, Tianyi Yang, Yuxin Su, Yangfan Zhou, and Michael R. Lyu.

Defuse: A Dependency-Guided Function Scheduler to Mitigate Cold Starts on

FaaS Platforms. In 2021 IEEE 41st International Conference on Distributed

Computing Systems (ICDCS), pages 194–204, July 2021. ISSN: 2575-8411.

doi:10.1109/ICDCS51616.2021.00027.

[218] Simon Shillaker and Peter Pietzuch. Faasm: Lightweight isolation for efficient

stateful serverless computing. In 2020 USENIX Annual Technical Conference

(USENIX ATC 20), pages 419–433, 2020.

[219] Paulo Silva, Daniel Fireman, and Thiago Emmanuel Pereira. Prebaking Func-

tions to Warm the Serverless Cold Start. In Proceedings of the 21st In-

ternational Middleware Conference, pages 1–13, Delft Netherlands, Decem-

ber 2020. ACM. URL: https://dl.acm.org/doi/10.1145/3423211.3425682,

doi:10.1145/3423211.3425682.

[220] Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, Mohammed Danish

219

http://doi.acm.org/10.1145/3302424.3303945
http://doi.acm.org/10.1145/3302424.3303945
https://doi.org/10.1145/3302424.3303945
https://doi.org/10.1109/ICDCS51616.2021.00027
https://dl.acm.org/doi/10.1145/3423211.3425682
https://doi.org/10.1145/3423211.3425682

Shaikh, Shivaram Venkataraman, and Aditya Akella. Atoll: A scalable low-

latency serverless platform. In Proceedings of the ACM Symposium on Cloud

Computing, pages 138–152, 2021.

[221] Josef Spillner, Cristian Mateos, and David A. Monge. FaaSter, Better, Cheaper:

The Prospect of Serverless Scientific Computing and HPC. In Esteban Mocskos

and Sergio Nesmachnow, editors, High Performance Computing, volume 796,

pages 154–168. Springer International Publishing, Cham, 2018. URL: http:

//link.springer.com/10.1007/978-3-319-73353-1_11, doi:10.1007/978-

3-319-73353-1_11.

[222] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E Gonzalez,

Joseph M Hellerstein, and Jose M Faleiro. A fault-tolerance shim for serverless

computing. In Proceedings of the Fifteenth European Conference on Computer

Systems, pages 1–15, 2020.

[223] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,

Jose M Faleiro, Joseph E Gonzalez, Joseph M Hellerstein, and Alexey Tumanov.

Cloudburst: Stateful functions-as-a-service. arXiv preprint arXiv:2001.04592,

2020.

[224] Jovan Stojkovic, Tianyin Xu, Hubertus Franke, and Josep Torrellas. MXFaaS:

Resource Sharing in Serverless Environments for Parallelism and Efficiency. In

Proceedings of the 50th Annual International Symposium on Computer Architec-

ture, pages 1–15, 2023.

[225] Foteini Strati, Xianzhe Ma, and Ana Klimovic. Orion: Interference-aware,

Fine-grained GPU Sharing for ML Applications. 2024.

220

http://link.springer.com/10.1007/978-3-319-73353-1_11
http://link.springer.com/10.1007/978-3-319-73353-1_11
https://doi.org/10.1007/978-3-319-73353-1_11
https://doi.org/10.1007/978-3-319-73353-1_11

[226] Aditya Sundarrajan, Mingdong Feng, Mangesh Kasbekar, and Ramesh K Sitara-

man. Footprint descriptors: Theory and practice of cache provisioning in a

global cdn. In Proceedings of the 13th International Conference on emerging

Networking EXperiments and Technologies, pages 55–67, 2017.

[227] Amoghavarsha Suresh and Anshul Gandhi. ServerMore: Opportunistic Execution

of Serverless Functions in the Cloud. In Proceedings of the ACM Symposium on

Cloud Computing, pages 570–584, 2021.

[228] Amoghavarsha Suresh, Gagan Somashekar, Anandh Varadarajan, Veeren-

dra Ramesh Kakarla, Hima Upadhyay, and Anshu Gandhi. ENSURE: Efficient

Scheduling and Autonomous Resource Management in Serverless Environments.

page 10, 2020.

[229] Amoghavarsha Suresh, Gagan Somashekar, Anandh Varadarajan, Veeren-

dra Ramesh Kakarla, Hima Upadhyay, and Anshul Gandhi. Ensure: Efficient

scheduling and autonomous resource management in serverless environments.

In 2020 IEEE International Conference on Autonomic Computing and Self-

Organizing Systems (ACSOS), pages 1–10, 2020. doi:10.1109/ACSOS49614.

2020.00020.

[230] Amoghvarsha Suresh and Anshul Gandhi. Fnsched: An efficient scheduler

for serverless functions. In Proceedings of the 5th International Workshop on

Serverless Computing, pages 19–24, 2019.

[231] Qinqin Tang, Renchao Xie, Fei Richard Yu, Tianjiao Chen, Ran Zhang, Tao

Huang, and Yunjie Liu. Distributed task scheduling in serverless edge computing

221

https://doi.org/10.1109/ACSOS49614.2020.00020
https://doi.org/10.1109/ACSOS49614.2020.00020

networks for the internet of things: A learning approach. IEEE Internet of

Things Journal, 9(20):19634–19648, 2022.

[232] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth Lanka.

Sequoia: Enabling quality-of-service in serverless computing. In ACM Symposium

on Cloud Computing (SoCC), 2020.

[233] Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, Tianlong Wu, and Haoran Yang.

Owl: performance-aware scheduling for resource-efficient function-as-a-service

cloud. In Proceedings of the 13th Symposium on Cloud Computing, pages 78–93,

San Francisco California, November 2022. ACM. URL: https://dl.acm.org/

doi/10.1145/3542929.3563470, doi:10.1145/3542929.3563470.

[234] Bohdan Trach, Oleksii Oleksenko, Franz Gregor, Pramod Bhatotia, and Christof

Fetzer. Clemmys: Towards secure remote execution in faas. In Proceedings of

the 12th ACM International Conference on Systems and Storage, pages 44–54,

2019.

[235] Sergio Trilles, Alberto González-Pérez, and Joaqúın Huerta. An IoT platform

based on microservices and serverless paradigms for smart farming purposes.

Sensors, 20(8):2418, 2020.

[236] Chia-Che Tsai, Donald E Porter, and Mona Vij. Graphene-SGX: A practical

library OS for unmodified applications on SGX. In 2017 USENIX Annual

Technical Conference (USENIX ATC 17), pages 645–658, 2017.

[237] Dmitrii Ustiugov, Theodor Amariucai, and Boris Grot. Analyzing Tail Latency

in Serverless Clouds with STeLLAR. In 2021 IEEE International Symposium on

222

https://dl.acm.org/doi/10.1145/3542929.3563470
https://dl.acm.org/doi/10.1145/3542929.3563470
https://doi.org/10.1145/3542929.3563470

Workload Characterization (IISWC), pages 51–62, Storrs, CT, USA, November

2021. IEEE. URL: https://ieeexplore.ieee.org/document/9668286/, doi:

10.1109/IISWC53511.2021.00016.

[238] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris

Grot. Benchmarking, analysis, and optimization of serverless function snapshots.

In Proceedings of the 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 559–572,

2021.

[239] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris

Grot. Benchmarking, analysis, and optimization of serverless function snapshots.

In Proceedings of the 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 559–572,

2021.

[240] Parichehr Vahidinia, Bahar Farahani, and Fereidoon Shams Aliee. Mitigating

cold start problem in serverless computing: A reinforcement learning approach.

IEEE Internet of Things Journal, 10(5):3917–3927, 2022.

[241] Blesson Varghese, Javier Prades, Carlos Reano, and Federico Silla. Acceleration-

as-a-service: Exploiting virtualised GPUs for a financial application. In 2015

IEEE 11th International Conference on e-Science, pages 47–56. IEEE, 2015.

[242] Carl A Waldspurger. Memory resource management in VMware ESX server.

ACM SIGOPS Operating Systems Review, 36(SI):181–194, 2002.

[243] Carl A Waldspurger, Nohhyun Park, Alexander Garthwaite, and Irfan Ahmad.

223

https://ieeexplore.ieee.org/document/9668286/
https://doi.org/10.1109/IISWC53511.2021.00016
https://doi.org/10.1109/IISWC53511.2021.00016

Efficient MRC Construction with SHARDS. In 13th USENIX Conference on

File and Storage Technologies (FAST 15), pages 95–110, 2015.

[244] Bin Wang, Ahmed Ali-Eldin, and Prashant Shenoy. Lass: running latency sensi-

tive serverless computations at the edge. In Proceedings of the 30th International

Symposium on High-Performance Parallel and Distributed Computing, pages

239–251, 2021.

[245] Hao Wang, Di Niu, and Baochun Li. Distributed machine learning with a

serverless architecture. In IEEE INFOCOM 2019-IEEE Conference on Computer

Communications, pages 1288–1296. IEEE, 2019.

[246] I Wang, Elizabeth Liri, and KK Ramakrishnan. Supporting iot applications with

serverless edge clouds. In 2020 IEEE 9th International Conference on Cloud

Networking (CloudNet), pages 1–4. IEEE, 2020.

[247] Jianqiang Wang, Pouya Mahmoody, Ferdinand Brasser, Patrick Jauernig,

Ahmad-Reza Sadeghi, Donghui Yu, Dahan Pan, and Yuanyuan Zhang. VirTEE:

A full backward-compatible TEE with native live migration and secure I/O.

In Proceedings of the 59th ACM/IEEE Design Automation Conference, pages

241–246, 2022.

[248] Yawen Wang, Kapil Arya, Marios Kogias, Manohar Vanga, Aditya Bhandari,

Neeraja J Yadwadkar, Siddhartha Sen, Sameh Elnikety, Christos Kozyrakis, and

Ricardo Bianchini. SmartHarvest: harvesting idle CPUs safely and efficiently in

the cloud. In Proceedings of the Sixteenth European Conference on Computer

Systems, pages 1–16, 2021.

224

[249] Zekun Wang, Pengwei Wang, Peter C Louis, Lee E Wheless, and Yuankai Huo.

Wearmask: Fast in-browser face mask detection with serverless edge computing

for covid-19. arXiv preprint arXiv:2101.00784, 2021.

[250] Xingda Wei, Tianxia Wang, Jinyu Gu, Yuhan Yang, Fangming Lu, Rong Chen,

and Haibo Chen. Booting 10K Serverless Functions within One Second via

RDMA-based Remote Fork. arXiv preprint arXiv:2203.10225, 2022.

[251] B. P. Welford. Note on a Method for Calculating Corrected Sums of

Squares and Products. Technometrics, 4(3):419–420, 1962. URL: https:

//www.tandfonline.com/doi/abs/10.1080/00401706.1962.10490022,

arXiv:https://www.tandfonline.com/doi/pdf/10.1080/00401706.1962.

10490022, doi:10.1080/00401706.1962.10490022.

[252] Sebastian Werner, Jörn Kuhlenkamp, Markus Klems, Johannes Müller, and

Stefan Tai. Serverless big data processing using matrix multiplication as example.

In 2018 IEEE International Conference on Big Data (Big Data), pages 358–365.

IEEE, 2018.

[253] Philipp Wiesner, Ilja Behnke, Dominik Scheinert, Kain Kordian Gontarska,

and Lauritz Thamsen. Let’s wait awhile: How temporal workload shifting can

reduce carbon emissions in the cloud. In ACM/IFIP International Middleware

Conference, 2021.

[254] Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas JA Harvey, and Andrew

Warfield. Characterizing storage workloads with counter stacks. In 11th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 14), pages

335–349, 2014.

225

https://www.tandfonline.com/doi/abs/10.1080/00401706.1962.10490022
https://www.tandfonline.com/doi/abs/10.1080/00401706.1962.10490022
http://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/00401706.1962.10490022
http://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/00401706.1962.10490022
https://doi.org/10.1080/00401706.1962.10490022

[255] Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and Xin Jin. Transparent

GPU sharing in container clouds for deep learning workloads. In 20th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 23), pages

69–85, 2023.

[256] Zhaorui Wu, Yuhui Deng, Yi Zhou, Jie Li, Shujie Pang, and Xiao Qin. FaaS-

Batch: Boosting Serverless Efficiency with In-Container Parallelism and Resource

Multiplexing. IEEE Transactions on Computers, 2024.

[257] Fei Xu, Yiling Qin, Li Chen, Zhi Zhou, and Fangming Liu. λdnn: Achiev-

ing predictable distributed DNN training with serverless architectures. IEEE

Transactions on Computers, 71(2):450–463, 2021.

[258] Shinichi Yamagiwa and Koichi Wada. Performance study of interference on

gpu and cpu resources with multiple applications. In 2009 IEEE International

Symposium on Parallel & Distributed Processing, pages 1–8. IEEE, 2009.

[259] Mengting Yan, Paul Castro, Perry Cheng, and Vatche Ishakian. Building a

chatbot with serverless computing. In Proceedings of the 1st International

Workshop on Mashups of Things and APIs, pages 1–4, 2016.

[260] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang Zhao,

Xingzhen Chen, and Keqiu Li. INFless: a native serverless system for low-

latency, high-throughput inference. In Proceedings of the 27th ACM International

Conference on Architectural Support for Programming Languages and Operating

Systems, pages 768–781, 2022.

[261] Yang Richard Yang and Simon S Lam. General AIMD congestion control. In

226

Proceedings 2000 International Conference on Network Protocols, pages 187–198.

IEEE, 2000.

[262] N. Young. The K-server dual and loose competitiveness for paging. Algorith-

mica, 11(6):525–541, June 1994. URL: http://link.springer.com/10.1007/

BF01189992, doi:10.1007/BF01189992.

[263] Neal E Young. On-line file caching. Algorithmica, 33(3):371–383, 2002.

[264] Hanfei Yu. FaaSRank: A Reinforcement Learning Scheduler for Serverless

Function-as-a-Service Platforms. PhD thesis, University of Washington, 2021.

[265] Hanfei Yu, Hao Wang, Jian Li, and Seung-Jong Park. Harvesting Idle Re-

sources in Serverless Computing via Reinforcement Learning. arXiv preprint

arXiv:2108.12717, 2021.

[266] Hangchen Yu, Arthur M Peters, Amogh Akshintala, and Christopher J Rossbach.

Automatic virtualization of accelerators. In Proceedings of the Workshop on Hot

Topics in Operating Systems, pages 58–65, 2019.

[267] Hangchen Yu and Christopher J Rossbach. Full virtualization for gpus reconsid-

ered. In Proceedings of the Annual Workshop on Duplicating, Deconstructing,

and Debunking, 2017.

[268] Yuxin Yuan, Xiao Shi, Zhengyu Lei, Xiaohong Wang, and Xiaofang Zhao. SMPI:

Scalable Serverless MPI Computing. In 2022 IEEE International Performance,

Computing, and Communications Conference (IPCCC), pages 275–282. IEEE,

2022.

227

http://link.springer.com/10.1007/BF01189992
http://link.springer.com/10.1007/BF01189992
https://doi.org/10.1007/BF01189992

[269] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott

Shenker, and Ion Stoica. Delay scheduling: a simple technique for achieving

locality and fairness in cluster scheduling. In Proceedings of the 5th European

conference on Computer systems, pages 265–278, 2010.

[270] Miao Zhang, Yifei Zhu, Cong Zhang, and Jiangchuan Liu. Video processing

with serverless computing: A measurement study. In Proceedings of the 29th

ACM workshop on network and operating systems support for digital audio and

video, pages 61–66, 2019.

[271] Song Zhang, Xiaochuan Luo, and Eugene Litvinov. Serverless computing for

cloud-based power grid emergency generation dispatch. International Journal

of Electrical Power & Energy Systems, 124:106366, 2021.

[272] Xuan Zhang, Hongjun Gu, Guopeng Li, Xin He, and Haisheng Tan. Online Func-

tion Caching in Serverless Edge Computing. In 2023 IEEE 29th International

Conference on Parallel and Distributed Systems (ICPADS), pages 2295–2302.

IEEE, 2023.

[273] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca, Sameh

Elnikety, Christina Delimitrou, and Ricardo Bianchini. Faster and Cheaper

Serverless Computing on Harvested Resources. In Proceedings of the ACM

SIGOPS 28th Symposium on Operating Systems Principles, page 724–739, New

York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/

3477132.3483580.

[274] Yu Zhang, Ping Huang, Ke Zhou, Hua Wang, Jianying Hu, Yongguang Ji, and

Bin Cheng. OSCA: An Online-Model Based Cache Allocation Scheme in Cloud

228

https://doi.org/10.1145/3477132.3483580
https://doi.org/10.1145/3477132.3483580

Block Storage Systems. In 2020 USENIX Annual Technical Conference, pages

785–798.

[275] Yu Zhang, Ping Huang, Ke Zhou, Hua Wang, Jianying Hu, Yongguang Ji,

and Bin Cheng. OSCA: An Online-Model Based Cache Allocation Scheme in

Cloud Block Storage Systems. In 2020 USENIX Annual Technical Conference

(USENIX ATC 20), pages 785–798. USENIX Association, July 2020. URL:

https://www.usenix.org/conference/atc20/presentation/zhang-yu.

[276] Han Zhao, Weihao Cui, Quan Chen, Shulai Zhang, Zijun Li, Jingwen Leng,

Chao Li, Deze Zeng, and Minyi Guo. Towards Fast Setup and High Throughput

of GPU Serverless Computing, April 2024. arXiv:2404.14691 [cs]. URL: http:

//arxiv.org/abs/2404.14691.

[277] Laiping Zhao, Yanan Yang, Yiming Li, Xian Zhou, and Keqiu Li. Understanding,

predicting and scheduling serverless workloads under partial interference. In

Proceedings of the International conference for high performance computing,

networking, storage and analysis, pages 1–15, 2021.

[278] Shixuan Zhao, Pinshen Xu, Guoxing Chen, Mengya Zhang, Yinqian Zhang, and

Zhiqiang Lin. Reusable enclaves for confidential serverless computing. In 32nd

USENIX Security Symposium (USENIX Security 23), pages 4015–4032, 2023.

[279] Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou. AQUATOPE:

QoS-and-Uncertainty-Aware Resource Management for Multi-stage Serverless

Workflows. In Proceedings of the 28th ACM International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, Volume 1,

pages 1–14, 2022.

229

https://www.usenix.org/conference/atc20/presentation/zhang-yu
http://arxiv.org/abs/2404.14691
http://arxiv.org/abs/2404.14691

[280] Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou. QoS-Aware

Resource Management for Multi-phase Serverless Workflows with Aquatope,

December 2022. arXiv:2212.13882 [cs]. URL: http://arxiv.org/abs/2212.

13882.

[281] Pawel Zuk and Krzysztof Rzadca. Scheduling Methods to Reduce Response

Latency of Function as a Service. In 2020 IEEE 32nd International Symposium on

Computer Architecture and High Performance Computing (SBAC-PAD), pages

132–140, September 2020. ISSN: 2643-3001. doi:10.1109/SBAC-PAD49847.

2020.00028.

[282] Pawe l Zuk, Bart lomiej Przybylski, and Krzysztof Rzadca. Call Scheduling

to Reduce Response Time of a FaaS System. In 2022 IEEE International

Conference on Cluster Computing (CLUSTER), pages 172–182, September 2022.

ISSN: 2168-9253. doi:10.1109/CLUSTER51413.2022.00031.

http://arxiv.org/abs/2212.13882
http://arxiv.org/abs/2212.13882
https://doi.org/10.1109/SBAC-PAD49847.2020.00028
https://doi.org/10.1109/SBAC-PAD49847.2020.00028
https://doi.org/10.1109/CLUSTER51413.2022.00031

CURRICULUM VITAE

Alexander Joseph Fuerst

fuersta.2013@gmail.com | linkedin.com/in/alex-fuerst

github.com/aFuerst | afuerst.github.io

OBJECTIVE

Systems engineer with five years’ development experience, expertise in low-level

virtualization, operating systems, and high-level distributed systems, who can analyze

and communicate findings to general audiences. Looking to design solutions to the

inefficiencies and problems of modern computing in cloud-scale environments.

EDUCATION

Intelligent Systems Engineering, PhD July 2024

Indiana University, Intelligent Systems Engineering

Intelligent Systems Engineering, MS December 2023

Indiana University, Intelligent Systems Engineering Major GPA 3.9

Computer Science, Bachelor of Science May 2017

fuersta.2013@gmail.com
linkedin.com/in/alex-fuerst
github.com/aFuerst
afuerst.github.io

Xavier University Major GPA 3.6

Diploma with Honors May 2013

Medina High School GPA 3.6

PUBLICATIONS

Alexander Fuerst, Abdul Rehman, and Prateek Sharma. Ilúvatar : A Fast Control

Plane for Serverless Computing. International ACM Symposium on High-Performance

Parallel and Distributed Computing [HPDC] 2023. Acceptance Rate = 21%

Alexander Fuerst, and Prateek Sharma. Locality-aware Load-Balancing For Server-

less Clusters. International ACM Symposium on High-Performance Parallel and

Distributed Computing [HPDC] 2022. Acceptance Rate = 19%

Alexander Fuerst, Stanko Novakovic, Inigo Goiri, Gohar Irfan Chaudhry, Prateek

Sharma, Kapil Arya, Kevin Broas, Eugene Bak, Mehmet Iyigun, and Ricardo Bian-

chini. Memory-Harvesting VMs in Cloud Platforms. International Conference on

Architectural Support for Programming Languages and Operating Systems [ASPLOS]

2022. Acceptance Rate = 20%

Alexander Fuerst, and Prateek Sharma. FaasCache: Keeping Serverless Computing

Alive With Greedy-Dual Caching. International Conference on Architectural Support

for Programming Languages and Operating Systems [ASPLOS] 2021. Acceptance

Rate = 18.8%

Alexander Fuerst, Ahmed Ali-Eldin, Prashant Shenoy, and Prateek Sharma. Cloud-

scale VM-deflation for Running Interactive Applications On Transient Servers. Inter-

national ACM Symposium on High-Performance Parallel and Distributed Computing

[HPDC] 2020. Acceptance Rate = 22%

EXPERIENCE

Google, Inc. Mountain View, California

Software Engineering Intern May 2023 - August 2023

• Delved into performance of advanced Linux and KVM-based virtualization

technologies under cloud workloads

• Explored techniques to seamlessly upgrade VMM and hypervisor with zero

downtime to guest OS and applications

• Modified Linux kernel, KVM, and Cloud Hypervisor VMM to test possibilities

for seamless upgrade

• Developed proof-of-concept experiments to show feasibility of designed techniques

Microsoft Research Redmond, Washington

Research Intern May 2021 - August 2021

• Analyzed modern hypervisor and control plane’s performance under strenuous

runtime conditions

• Modified Azure control plane, hypervisor, and guest OS to improve cluster

virtual memory management by 50%

• Collaborated with Azure team to alleviate production contentions and plan

rollout across clusters

• Improved resource utilization by 20% in Azure without impact to hosted virtual

machines or applications

Indiana University Bloomington, Indiana

Research Assistant August 2021 - Present

• Performed advanced research in cloud resource management, serverless comput-

ing, and virtualization

• Developed novel techniques and algorithms improving resource utilization and

latency in cloud control planes

• Designed experiments to showcase techniques’ effectiveness and transform results

into actionable data

• Published several first author papers and gave presentations at high-impact

conferences

Indiana University Bloomington, Indiana

Associate Instructor August 2019 - May 2020

• Assisted with Engineering Cloud Computing & Distributed Computing Engi-

neering course work

• Created assignments and exams given to students

• Hosted lab and office hours to discuss project design and assist with student

questions

Hyland Software Westlake, Ohio

Developer 1 & 2 June 2017 - July 2019

• Developed features and wrote tests for a cloud application capable of handling

thousands of daily users

• Troubleshot complex issues of a multiservice .Net SaaS application running in

production

• Refactored monolith application into a microservice design and support autoscal-

ing inside Kubernetes

• Modernized application CI/CD pipeline to halve time-to-deployment for features

and enable rollback scenarios

Xavier University Cincinnati, Ohio

Teaching Assistant August 2016 - December 2016

• Work with students during class exercises

• Host office hours answering questions and giving guidance on assignments

Xavier University Cincinnati, Ohio

Student Technician Tier II August 2013 - August 2017

• Troubleshoot complex technology issues and provide onsite service and repair

for faculty, staff and public computing

• Provide software, hardware and network problem resolution

• Handle tickets escalated from Tier I

Salisbury University Salisbury, Maryland

NSF REU Researcher May 2016 - August 2016

• Applied emerging parallel computing models using GPU and CPU parallelism

with NVIDIA’s CUDA

• Tackled data and compute-intensive problems in geographic information systems

• Presented findings to GIS professionals and Salisbury Faculty

Critchfield, Critchfield & Johnston, Ltd. Medina, Ohio

Paralegal Intern August 2012 - June 2013

• Prepared and delivered documents to county offices

• Finalized legal binders for delivery to clients

PROJECTS

Ilúvatar FaaS Control Plane

An open-source, fast, jitter-free control plane for Serverless function execution

written in ∼23k lines of Rust. Ilúvatar provides a 3x reduction in overhead

compared to popular open-sourced examples under normal load, and under high

load has a 100x reduction in p99 latency. Additionally, it enables unique usability

and extensibility designed to accelerate FaaS research.

FaasCache

https://github.com/cos-in/iluvatar-faas

Introduced caching insights into the Function-As-A-Service paradigm. Enhanced

the open source FaaS application OpenWhisk using Greedy-Dual caching. Re-

duced cold-start overhead for functions by up to 3x and can reduce constrained

system resources by up to 30%. These high cache reuse results allow for increased

ability to serve functions and lower latency for users.

CompuCell3D Tissue Modeling Parallel Rendering

CompuCell3D is a 3D modeling software for large-scale cellular, tissue, and

biochemical simulation. The modeling steps used an OpenMP Cellular Potts

Model algorithm, but the 3D rendering of cell states and positions was done

serially. This project re-wrote the rendering code in ∼1000 lines of OpenMP

C, achieving a near-linear scaling with the increase in threads. Overall, some

simulations were accelerated by up to 50% over the serial implementation.

Dynamically Typed Racket Compiler

A scratch built compiler supporting a subset of statically typed and dynamically

typed Racket.

Tensorflow NanoParticle Simulator

Implementation of the Lennard-Jones potential in a simulated cube and electro-

static forces of colliding ions in a confined nano-channel. THe simulator Achieved

performance similar to MPI/C++ code performing the same simulation.

Jae OS

Just Another Educational Operating System. A port of the Kaya OS project to the

new µARM emulator. Wrote the student guide and the canonical implementation

of Jae OS.

Kaya OS

Wrote a complete operating system from scratch. The final product, in addition

to support a multitude of peripheral devices, successfully ran eight concurrent

processes, each running in their own virtual address space.

Parallel GIS Raster Calculator

Developed a tool combining CPU based parallelism and NVIDIA’s CUDA tech-

nology for GPU calculation for performing GIS raster calculations. Achieved

2 - 5 times performance increase over traditional analysis tools due to GPU

performance.

Eagle Scout Project

Installed commemorative plaques on veterans’ graves at local cemetery. Led a

group of 15 scouts to plan and accomplish this project.

SKILLS

Programming: Debugging, Problem Solving, Code Optimization, Git, Agile

Languages: Rust, Python, C, C++, C#, Bash, PowerShell, SQL, LATEX

Infrastructure: Kubernetes, Docker, Redis, Octopus Deploy, Ansible, AWS,

Azure

Technologies: Linux, KVM, GPUs, GDB, OpenMP, MPI, Tensorflow, SQL

Server

PRESENTATIONS

• Ilúvatar : A Fast Control Plane for Serverless Computing. HPDC 2023. Slides

• Locality-aware Load-Balancing For Serverless Clusters. HPDC 2022. Slides

Video

• Memory-Harvesting VMs in Cloud Platforms. ASPLOS 2022. Slides Video

• FaasCache: Keeping Serverless Computing Alive With Greedy-Dual Caching.

ASPLOS 2021. Slides Video

• Cloud-scale VM-deflation for Running Interactive Applications On Transient

Servers. HPDC 2020. Slides Video

AWARDS

Reserve Champion, Baked Goods Division Monroe County Fair 2023

HPDC Travel Grant Travel grant to HPDC 2023

ACM Travel Grant Travel grant to ASPLOS 2022

John F. Niehaus Scholarship Xavier University

John F. Niehaus Award Xavier University

Eagle Scout Boy Scouts of America

National Honors Society Medina High School

National Technical Honors Society Medina County Career Center

https://afuerst.github.io/assets/iluvatar-presentation.pptx.
https://afuerst.github.io/assets/faas-lb-presentation.pptx.
https://youtu.be/nEB45_dtx6U.
https://afuerst.github.io/assets/5B_0262_Fuerst.pptx.
https://www.youtube.com/watch?v=fvPAzienOTQ.
https://afuerst.github.io/assets/ASPLOS-2021-pres.pptx.
https://www.youtube.com/watch?v=vpP5nROZpDM.
https://afuerst.github.io/assets/HPDC-2020-pres.pptx.
https://www.youtube.com/watch?v=gFzaHkM_1Tg.

COURSE WORK

• Engineering Cloud Computing

• Engineering Distributed Systems

• Graph Analytics

• Deep Learning Systems

• Engineering Compilers

• Programming Languages

• Engineering Operating System

• Simulating Nanoscale Systems

• High Performance Computing

• Computational Modeling for Virtual

Tissues

• Databases

ACTIVITIES

Parish Pastoral Council, St. Paul’s Catholic Center Member, 2023-2024

Young Adult Ministry, St. Paul’s Catholic Center Vice Chair, 2023-2024

Member, 2022-2023

Computer Science Club, Xavier University Vice President, 2016-2017

Treasurer, 2015-2017

Dean’s Advisory Council, Xavier University Member, 2015 – 2017

	Dedication
	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Thesis Outline

	Background: Serverless computing and Function as a Service
	What is Serverless Computing?
	Function Isolation

	Virtualization for FaaS
	Virtual Machines
	VM Resource Management
	Containers

	Serverless Control Plane Research
	Workload Characterization
	Cold Start Mitigation
	Load Balancing
	Heterogeneous Hardware
	Serverless Data-plane

	Application Mitigations of Control Plane Deficiencies
	Serverless Applications
	ML in Serverless
	Scientific Serverless Computing

	Keeping Serverless Computing Alive with Greedy-Dual Caching
	Caching Background
	Keep-alive Tradeoffs
	Policy Goals and Considerations

	Caching-based Keep-Alive Policies
	Greedy-Dual Keep-Alive Policy
	Other Caching-Based Policies

	Server Provisioning Policies
	Static Provisioning
	Elastic Dynamic Scaling

	Implementation
	Experimental Evaluation
	Trace-Driven Keep-Alive Evaluation
	OpenWhisk Evaluation
	Effectiveness of Provisioning Policies

	Related Works
	Comparative Works

	Conclusion

	Load- and Locality-Aware Load Balancing
	Background: Load Balancing
	Consistent Hashing

	Load-aware Consistent-Hashing
	Tradeoff between Locality and Load
	Key Principle: Load-based Forwarding
	Server Load Information
	Why CH-BL Is Insufficient
	Incorporating Function Performance Characteristics
	Handling Bursts
	Putting it all together: CH-RLU

	Function Prioritization
	Can Serverless Functions be Delayed?
	High- and Low-Priority Workloads

	Priority Based Consistent Hashing
	Quality of Service Architecture
	k-CH-RLU

	Implementation
	Performance Optimizations For OpenWhisk

	Evaluation
	Evaluation Environment
	Load-balancing Performance
	Multi-pool Load-balancing Performance

	Related Work
	Load Balancing Related Work
	QoS Related Work

	Conclusion

	Ilúvatar: A Low-Latency FaaS Research Control Plane
	Why a new control plane?
	FaaS Control Planes

	Ilúvatar Design
	Architecture and Overview
	Function Lifecycle
	Worker Performance Optimizations
	Container Handling

	Function Invocation Queuing
	Queue Architecture
	Queuing Policies

	Implementation
	Support for FaaS research

	Experimental Evaluation
	Control Plane and Function Performance
	Queuing Performance

	Related Work

	Opportunistic GPU Acceleration for Serverless Functions
	Background and Motivation
	Why GPU Acceleration for Functions
	GPU Programming Model

	Design Requirements and Key Challenges
	Cold-starts for GPU Containers
	Tradeoffs in Locality, Throughput, and Fairness
	GPU Multiplexing Mechanisms

	Design: Scheduling GPU Functions
	Key Insight: GPUs as Multi-Queue I/O Devices
	MQFQ-Sticky: Locality-enhanced Fair Queuing
	Integrated Memory Management and Scheduling
	Multi-GPU Load Management and Feedback

	Implementation and Microbenchmarks
	CUDA Interposition Shim
	Memory Management

	Experimental Evaluation
	GPU Scheduling Performance
	Scaling
	Impact of Scheduling Parameters

	Related Work

	Future Work and Conclusion
	Future Work
	Work Stealing Scheduling
	Polymorphic Functions
	Serverless for Distributed Computing
	FaaS Security

	Conclusion

	Bibliography
	Curriculum Vitae

