
Locality-aware Load-Balancing For Serverless Clusters
Alexander Fuerst

Indiana University

alfuerst@iu.edu

Prateek Sharma

Indiana University

prateeks@iu.edu

ABSTRACT
While serverless computing provides more convenient abstrac-

tions for developing and deploying applications, the Function-as-a-

Service (FaaS) programming model presents new resource manage-

ment challenges for the FaaS provider. In this paper, we investigate

load-balancing policies for serverless clusters. Locality, i.e., run-

ning repeated invocations of a function on the same server, is a

key determinant of performance because it increases warm-starts

and reduces cold-start overheads. We find that the locality vs. load

tradeoff is crucial and presents a large design space.

We enhance consistent hashing for FaaS, and develop CH-RLU:

Consistent Hashing with Random Load Updates, a simple practi-

cal load-balancing policy which provides more than 2× reduction

in function latency. Our policy deals with highly heterogeneous,

skewed, and bursty function workloads, and is a drop-in replace-

ment for OpenWhisk’s existing load-balancer. We leverage tech-

niques from caching such as SHARDS for popularity detection, and

develop a new approach that places functions based on a tradeoff

between locality, load, and randomness.

CCS CONCEPTS
• Computer systems organization→ Cloud computing.

KEYWORDS
Functions as a Service, Serverless Computing, Cloud Computing,

Load Balancing
ACM Reference Format:
Alexander Fuerst and Prateek Sharma. 2022. Locality-aware Load-Balancing
For Serverless Clusters. In Proceedings of the 31st International Symposium
on High-Performance Parallel and Distributed Computing (HPDC ’22), June
27–July 1, 2022, Minneapolis, MN, USA. ACM, New York, NY, USA, 13
pages. https://doi.org/10.1145/3502181.3531459

1 INTRODUCTION
An ever-increasing range of applications and workflows are now
using Functions as a Service (FaaS). By handling all aspects of func-
tion execution, including resource allocation, cloud platforms can
provide a “serverless” computing model where users do not have
to explicitly provision and manage cloud resources (i.e., virtual-
ized servers). Applications such as web services, machine learning,
data analytics, and even high-performance computing can benefit

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9199-3/22/06. . . $15.00
https://doi.org/10.1145/3502181.3531459

greatly from the resource elasticity, lower pricing, auto-scaling, and

development convenience provided by FaaS platforms.

For cloud providers, FaaS has emerged as an important and chal-

lenging workload. While it provides more convenient abstractions

for developing and deploying applications, the FaaS programming

model presents new fundamental performance and efficiency trade-

offs. When coupled with the extreme scale (public clouds execute

millions of functions a day) and heterogeneity (applications have

widely varying function invocation rates and resource footprints),

FaaS presents cloud providers with several performance challenges.

A direct consequence of the FaaS programming model and a

fundamental performance attribute is the high startup latency of

functions. Before the user-provided function code can be executed,

several initialization steps must first be performed by the FaaS

platform. Operations such as initializing a virtual execution envi-

ronment (such as a lightweight VM or a container), and installing

data and code dependencies (packages and libraries), can take a

significant amount of time. These initialization overheads can be

significant, and increase the function latency by orders of magni-

tude. These startup overheads can be ameliorated and amortized

by keeping the initialized function state “warm” in server memory.

However, this function “keep-alive” presents an important tradeoff

between memory usage and effective function latency.

In this paper, we present the design and implementation of an

auto-scaling load balancer for FaaS platforms (such as OpenWhisk,

OpenFaaS, and others). We address the challenges of routing and

scheduling functions on a cluster of servers, and how such clusters

can be horizontally scaled. When deciding which server a function

should be run on, our key design principle is to use locality to re-

duce function cold-starts. Running a function on the same subset

of servers increases the probability that a “warm” in-memory invo-

cation of the same function can be reused, which reduces function

latency. However, we find that locality alone is insufficient: server

load is also an important parameter which influences the slowdown

of functions due to queueing delays and resource contention on

overloaded servers.

Our key finding is that the tradeoff between function-locality

and server-load is critical to achieve good function latency and

cluster utilization. This tradeoff results in a large design space of

load-balancing policies and algorithms, and presents three main

challenges. First, functions are highly heterogeneous in terms

of their initialization overheads, resource footprints, and invoca-

tion frequencies. However, most classic load-balancing approaches

for clusters of web-servers and data storage tend to assume ho-

mogeneous requests, and thus cannot directly be used. Second,

production FaaS workloads tend to have extremely high skew:

a tiny fraction of functions tend to account for a vast majority

of invocations. This has severe ramifications for hashing-based

load-balancing (such as consistent hashing), which assumes ho-

mogeneous object popularities to provide guarantees about server

Session 6: Cloud Computing and Machine Learning HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

227

https://doi.org/10.1145/3502181.3531459
https://doi.org/10.1145/3502181.3531459
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3502181.3531459&domain=pdf&date_stamp=2022-06-27

loads. And finally, large FaaS clusters cannot assume that exact and

timely information about server loads will always be available: and

thus load-balancing policies must deal with stochastic and stale
server loads.

Our goal is to design simple load-balancing and scaling policies

that address these challenges in a rigorous and practical manner.

Because of the importance of locality in improving function la-

tency, we use consistent hashing [20] as the building block, which

preserves locality even when the cluster is scaled by adding or

removing servers, which is critical since function workloads are

highly bursty. In particular, we extend Consistent Hashing with

Bounded Loads [26], where the key idea is to run a function on its

“home” server as long as the server is not overloaded. This preserves

locality and allows for functions to be “forwarded” to other servers

in case of overload. Our load-balancing policy is cognizant of the

different utility of locality for functions based on their cold and

warm running times: functions that have a high benefit from keep-

alive are more likely to be run on their home servers. To deal with

stale server load information and bursty function invocations, we

use stochastic random loads, such that very popular functions can

be spread out among more servers and minimize the herd-effect of

overloading servers running bursty popular functions.

We make use of the recent equivalence between function keep-

alive and caching [15], and develop a new simplified version of

SHARDS [36] for our load-balancing policy for detecting and han-

dling popular functions. Our policies are designed to be simple

and practical, have a small number of user-controlled parameters,

which allows them to be a drop-in replacement for the default

load-balancing implementation in OpenWhisk [2].

Prior work in serverless computing has largely focused on op-

timizing performance on a single server using various cold-start

mitigating mechanisms and policies [15, 35]. We build on past in-

sights on the importance of function locality, and extend them to

a large cluster of servers instead of a single server. While load-

balancing has a long history of rigorous solutions, we find that

the heterogeneity, skew, and stale-loads of the FaaS environment

present unique challenges. Classic load-aware techniques that use

randomization such as power of 2 random choices do not capture

locality and lead to high cold-starts, and hashing-based techniques

cannot deal with the extreme skew in function popularity.

In summary, we make the following contributions:

(1) We find that the locality vs. load tradeoff is central to func-

tion performance, and show how it can be combined with

consistent hashing. Our resultant load-balancing policy, Con-

sistent Hashing with Random Load Updates (CH-RLU), is

simple, and tackles practical challenges of highly heteroge-

neous functions, bursty workloads, and stale/imprecise load

information on a large cluster of servers.

(2) We implement and evaluate our CH-RLU policy in Open-

Whisk. It provides more than 2.2× reduction in average func-

tion latency.

(3) We conduct an empirical investigation into OpenWhisk’s

performance at various load levels, and find extremely high

jitter due to resource contention (latencies can increase by

more than 10×). With the help of our optimizations, Open-

Whisk can serve 5× more traffic.

Application Warm Time (s) Cold Time (s)

Web-serving 0.179 1.153

ML Inference (CNN) 2.211 7.833

Disk-bench (dd) 1.068 2.944

Matrix Multiply 0.117 1.067

Sklearn Regression 53.57 54.45

AES Encryption 0.587 2.064

Video Encoding 10.28 11.51

JSON Parsing 0.414 1.962

Table 1: FunctionBench [22] functions run times’ are signif-
icantly longer on cold starts. Ideally we want all of our func-
tions to run warm to lower user latency. Cold starts also in-
crease system load by creating runtime overhead.

(4) We evaluate various load and locality-sensitive policies in a

discrete-event simulator using the Azure function traces [30],

and find that CH-RLU can outperform even a omniscient,

impractical, online greedy approach by more than 20% under

a wide range of conditions.

2 BACKGROUND
2.1 FaaS Function Execution
Function Initialization Overheads. The Function-as-a-Service
computing paradigm sees providers running user code on-demand

when a request comes in, and importantly deciding where it should
run. Each invocation must be run in isolation from other concurrent

and co-located invocations, and thus security isolation is provided

by running each invocation in a fresh sandboxed environment.

Sandboxes are generally implemented using containers (such as

Docker [1]) or lightweight VMs (such as Firecracker [3]) created on

the server that runs the invocation. Creation time for both choices

can be significant, adding latency to the in-flight request.

Many techniques have been proposed to reduce the initialization

overhead from such cold starts. Cold starts can be mitigated by

skipping initialization entirely, by saving in memory and reusing

the execution environment for subsequent invocations of the same

function. Keeping the function “warm” thus allows a provider to

amortize the startup cost across future invocations.

The warm and cold time for different functions from the Func-

tionBench [22] workload suite are shown in Table 1. The table

shows the total execution latency when these functions are run

on OpenWhisk. The cold times, because of the large initialization

overheads, are 1 − 10× larger than the warm running time, which

occurs when the function is run in an already initialized container

which is cached in memory.

Keep-alive For Reducing Cold-starts. Servers cannot keep all

the functions routed to them in memory indefinitely, and when

memory is needed it must choose which function to retain, aka

a keep-alive policy. Many FaaS offerings, including OpenWhisk

which we build on here, use a time-to-live approach that evicts a
function from memory if it isn’t used within a certain time win-

dow. More recent advanced techniques based on LRU and GreedyD-

ual [8] caching algorithms make the decision based on the functions

Session 6: Cloud Computing and Machine Learning HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

228

startup time, memory footprint, and invocation frequency when

making evictions [15].

However, the benefits of locality have been investigated primar-

ily at the single-server level. Most real-world FaaS deployments use

a large cluster of servers sitting behind a load-balancer. Tailoring

the load balancing algorithm to compliment the choices made by the

cache eviction algorithm, especially locality reuse, is vital in FaaS,

and is the focus of this paper. For example, “sticky” load-balancing

and routing a function to the same server preserves locality, but at

the risk of a highly overloaded server. Since function latencies also

depend on the load on the server, this naïve policy would be sub-

optimal, especially if the workload consists of functions with highly

variable popularities and running times. We shall elaborate on this

further in the next section, and show that the tradeoffs imposed by

FaaS requires a new class of load-balancing approaches.

2.2 Load Balancing
Managing the load of a cluster of servers is a common problem in

distributed computing systems. Load-balancing policies typically

rely on some notion of “load” of a server, such as the number of con-

currently executing tasks, length of the task-queue, cpu-utilization,

etc. The first broad class is compute-oriented load-balancers, typi-

cally used for short-running tasks and queries. Load-balancing for

computational tasks is common in scenarios like web-clusters [21].

In these systems, the tasks can be executed on any server, servers

in a cluster are largely fungible, and the task performance largely

depends on the server-specific cpu-utilization at the time.

Load-balancing techniques have received significant theoretical

attention (especially using queueing theory), as well as many prac-

tical systems [11]. From a queueing theory perspective, policies

such as least-work-left (LWL) and Join-Shortest-Queue (JSQ), have

studied near-optimal load balancing for computing load-dependent

workloads under a processor-sharing (PS) setting.

Interestingly, load-balancing for data-oriented systems, such as

Content Delivery Networks (CDNs) [27], and distributed key-value

stores (such as Amazon Dynamo [11]) must also balance the load on

servers, but with data locality as a key requirement. In this context,

locality refers to requests for the same object being handled by the

server, or the same subset of servers if the object is replicated. We

find that FaaS load balancing requires and benefits from both these

objectives: minimizing computing load and maximizing locality to

reduce cold-starts.

2.3 Consistent Hashing
For data-oriented systems, a common technique to ensure locality

is Consistent Hashing [20, 21]. Objects are mapped to servers based

on some object id or key. Consistent hashing preserves object-server

mapping even in the face of server additions and removals, which

improves locality. Figure 1 provides an overview of consistent hash-

ing. Both objects and servers are hashed to points on a “ring”, and

objects are assigned to the next server (in the clockwise direction)

in the ring. Addition or removal of servers only affects the nearby

objects by remapping them to the new next server in the ring.

OpenWhisk uses a modified consistent hashing algorithm for

its default load balancer. As functions are sent to servers, their

expected memory footprint is added to a server-specific running

0

1

2

3

A

Local server

Functions

Server
Forward if necessary

Figure 1: Consistent hashing runs functions on the nearest
clockwise server. Functions are forwarded along the ring if
the server is overloaded.

10−7 10−5 10−3 10−1 101 103
Frequency*Running-time

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

1000
2000
5000
10000

Figure 2: Function load is very heavy tailed (note the log X
axis). Each line represents a different random subset and as-
sociated subset size from the Azure function trace.

counter of outstanding requests. Upon completion the memory

size of a function is decremented from that server’s counter. If the

counter for a function’s “home” server would exceed the assigned

memory on the server it is forwarded along the ring. The drawback

of this policy, and consistent hashing as a whole, is that the perfor-

mance can be affected by the relative popularities of the different

objects. A highly popular object can result in its associated server

getting overloaded. This problem is exacerbated in the case of FaaS

functions, as we shall demonstrate in the next section.

3 CHALLENGES IN FAAS LOAD-BALANCING
Load balancing in FaaS clusters represents a unique set of challenges

which we describe in this section. We motivate our observations us-

ing the Azure function trace [30], as well as empirical performance

measurements conducted using OpenWhisk.

3.1 Function Heterogeneity and Skew
For locality-sensitive load-balancing techniques to be effective, it

is important for each function to impose roughly similar load on

the system. However, functions vary widely in their frequency of

Session 6: Cloud Computing and Machine Learning HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

229

10−2 10−1 100 101 102 103 104 105

IAT (s)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

All
Top 0.1%
Top 1%
Top 10%

Figure 3: Inter arrival times of popular functions can be ex-
tremely low, and show a very wide variance (note the log-
scale of the X axis).

invocation as well as their running time. The running-time het-

erogeneity of functions can be seen in Table 1, which shows that

the times can range from 100ms to almost one minute. Thus, the

computing requirements (in terms of running time) of functions

are highly heterogeneous.

The popularities of the functions (i.e., their invocation frequency)

is also highly skewed. Figure 2 shows the distribution of the fre-

quency × running-time, for four randomly sampled subsets of func-

tions from the Azure trace. This metric is effectively the “induced-

load” of a function. We see that the functions are extremely heavy

tailed in their induced-load: the “heavy” top 20% functions consume

2 orders of magnitude more resources than the average. Thus, with

classic consistent hashing the servers handling the heavy func-

tions will be extremely overloaded, which will contribute to severe

function slow-down due to resource contention on the servers.

3.2 Bursty Invocations
The second challenge is that the function arrivals can be very bursty

and can vary widely by function. Figure 3 shows the inter-arrival-

time (IAT) distribution computed from the Azure functions dataset.

We see the average IAT of functions varies widely (the “All” line in

the figure): by more than seven orders of magnitude.

Importantly, the IAT of the popular functions (ordered by number

of invocations) can be significantly lower and different. For instance,

for the top 10% of the popular functions, their 90
𝑡ℎ

percentile IAT

is less than 1 second. In contrast, the 90
𝑡ℎ

percentile IAT for all

functions is 2,000 seconds. This heavily skewed workload also has

significant ramifications for Load Balancing, since we must be

able to handle highly bursty functions, as well as the long tail of

infrequently invoked functions. This fairness in function handling

is thus an important challenge in FaaS load balancing.

3.3 Function Performance and Server Load
Our goal is to minimize the total end-to-end function execution

latency. Unlike classic data-oriented load-balancing, function exe-

cution latency can be highly sensitive to the server load. That is,

running on an overloaded server (even if it is a warm-start), can

result in significant latency increase and performance degradation.

Function performance can be affected by many factors such as

the number of concurrently running functions, the CPU utilization,

Web CNN dd

MatM
ul

Sk
lea

rn AES
Vide

o
JSO

N
0

5

10

15

20

No
rm

al
ize

d
La

te
nc

y

Figure 4: Functions’ warm latencies vary widely even under
no system load, due to OpenWhisk jitter.

the load-average, interference due to other co-located functions, etc.

The slowdown in a processor-sharing system due to system load

has been well modeled. Queueing theory approaches for G/G/PS

systems approximate the running time of a task to be proportional

to 1/1 − 𝜌 , where 𝜌 is the system utilization/load.

However, function heterogeneity and their execution character-

istics presents many challenges in modeling and understanding

their performance. We have found that the container initialization

and other OpenWhisk overheads, even for warm starts, can be a

significant source of latency, slowdown, and jitter.

Function Jitter. To understand how system conditions can affect

runtime of our functions, we first track their end-to-end latencies

while the system is empty. In Figure 4, we run each function re-

peatedly until we have 15 warm runs, then normalize those warm

times by the minimum run and plot the results as a violin. Surpris-

ingly most functions have wildly inconsistent runtimes, ranging

from 2x to 20x! OpenWhisk traverses a complicated code path with

several network hops in order to run user code, even on a warm

start. We recorded the minimum time for all this OpenWhisk over-

head to be 0.015 seconds, the average was a shockingly high 0.5

seconds, and the 99
𝑡ℎ

percentile reached 5 seconds. These high

system overheads are largely caused by write-contention on the

shared databases OpenWhisk maintains for tracking functions and

their results. This high-variance system overhead most strongly

affects short running functions, but negatively affects everything

in the system. Such significant jitter motivates our stale-load aware

load balancing policy, which we develop in the next section.

Load-sensitivity. Furthermore, we have found that different func-
tions are affected by server load differently. Figure 5 shows the corre-
lation between function latency and the Linux load-average of the

server for different function types. The load-average is normalized

to the number of CPU cores: thus a load-average of 2 in the figure

for the 16-CPU VMs corresponds to a Linux load-average of 32.

The load on the servers was increased by increasing the number of

concurrently executing functions of the same type.

We see that in general, as the server load increases, so does the

latency of the function invocations. Each point in the scatter-plots

of Figure 5 represents a unique invocation, with the latencies nor-

malized to the lowest execution latency observed for that function.

The AES encryption function (Figure 5a) shows a gradual in-

crease in latency as the load increases. Surprisingly, the effect of

load is minimal: the latency increases by “only” 2x even at a 10x

Session 6: Cloud Computing and Machine Learning HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

230

Figure 5: Latency increases due to system load, but is
function-dependent.

load. The longer-running ML training function (Figure 5b) also

sees a correlation between server load and its end-to-end latency.

However, it’s latency variance is lower because the longer running

time (50 seconds) hides the variable OpenWhisk overhead. Both

functions presented here have the highest correlation between sys-

tem load and latency, yet themselves do not have a high correlation.

Thus scheduling on an overloaded server can degrade function

performance, it must be weighed against the performance penalty

of a cold start.

4 LOAD-AWARE CONSISTENT-HASHING
In this section, we describe the load-balancing algorithm which is

locality, stale-load, and burst aware. We assume a cluster homoge-

neous servers, and a new function invocation can be sent to any of

the servers. Each server implements keep-alive for functions: after

successful execution, the function’s container is stored in server

memory, and evicted based on some eviction policy.

4.1 Tradeoff between Locality and Load
We use consistent hashing as the fundamental principle to ensure

high locality: repeated invocations of the same function occur on

the same server. However, popular functions, i.e., which are invoked

very frequently, can result in overloaded servers. Because function

performance is affected by server load and resource availability,

focusing on locality alone can result in slow function execution.

Function popularities are also highly skewed: a small percentage

account for a vast majority of invocations. With pure locality-based

load-balancing, the servers of these popular functions would be

severely overloaded. Functions also can run for significantly longer

than simple web requests, and thus they impose more load on

servers, and the cost of a wrong placement decision is higher. This,

combined with bursty invocations, can significantly increase the

tail latency of functions. Thus pure-locality policies such as classical

consistent hashing are not sufficient, and our research question is:

Can consistent hashing be used to reduce latency due to overloaded
servers? Or put another way, can we balance the tradeoff between

function locality and server-loads with consistent hashing?

Our key idea is to extend consistent hashing to take also into

account server loads, the cold-start overheads of different functions,

and the bursty traffic that is a key characteristic of FaaS workloads.

In the rest of this section, we describe our approach.

4.2 Key Principle: Load-based Forwarding
To balance the locality vs. server load tradeoff, we build on a

new variant of consistent hashing called Consistent Hashing with

Bounded Loads [26] (abbreviated as CH-BL in the rest of the paper).

The key idea behind CH-BL is to use consistent hashing to locate

servers for objects, and if the servers are “full”, then “forward” the

objects to the next server in the consistent hashing ring.

For example, in Figure 1, function A is originally assigned to

server 0, but this “home” server is overloaded (already runningmany

functions), and thus the function is forwarded along the ring until

a suitable non-overloaded server (2) is found. Any 5-independent

hashing function can be used for determining the “home” server of

a function. Users can specify the load upperbound or the capacity

of the server (𝑏), which determines the max load the server can

sustain. Consistent hashing with bounded loads provides many

strong theoretical guarantees on the length of the forwarding chain

until the object is safely placed on a server.

Interestingly, forwarding along the ring not only avoids server

overloads, but also improves locality, even in overload scenarios.
Forwarding along the ring has the advantage that even if func-

tion is not run on its “home” server, subsequent invocations that

“overflow” still have a high warm-start probability on the servers

on the overflow chain. The warm-start probability is highest on

the home server, and decays the farther the function is from its

home server. This is more beneficial than alternative techniques

such as Consistent Hashing with Random Jumps [7], which do not

preserve locality and instead forwards to randomly chosen least

loaded servers.

4.3 Server Load Information
Server load is a key metric in load-balancing policies. We need to be

able to determine the relative suitability of one server over another,

and thus many existing metrics can be used to provide information

about server loads. Simple metrics such as number of running

functions are insufficient, since functions can have highly variable

execution times. OpenWhisk currently uses occupied-memory used

by active/running invocations as a proxy for load, and is unsuitable

for the same reason. Both these metrics fail to capture CPU loads

and lead to scalability issues when used by the load-balancer.

Instead, we primarily rely on system-level load metrics, such

as the standard Linux 1-minute load-average. In addition to CPU

utilization, this also captures the I/O wait due to cold-starts, and

provides a more realistic measure of load. Traditional Linux load-

average estimates the total number of processes running and ready-

to-run, and we normalize the load-average by the number of CPUs.

Thus, a load-average of 8 on an 8 core server (discounting hyper-

threading) is normalized to 1.

An important practical consideration is that load information is

often stale, with the degree of staleness ranging from a few seconds

to several minutes. For instance, because the Linux load average is

an exponential moving average, it is slow to change. Furthermore,

load monitoring and reporting has delays due to how frequently

the metrics are gathered at the local server, and how often they

are made available to the load-balancer. We use a simple publish-

subscribe-like system, where individual servers periodically (every

Session 6: Cloud Computing and Machine Learning HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

231

5 seconds) push their load information, and the load-balancer uses

these published loads to make all scheduling decisions.

4.4 Why CH-BL Is Insufficient
The high computing load of functions, their bursty nature, and the

staleness of loads, are the three major challenges to Consistent

Hashing with Bounded Loads [26] that the original algorithm is not

designed to meet. There are a few practical considerations and key

differences between simple object/storage caching and function

execution: 1. CH-BL does not take into account the heterogeneity

in running times and memory size of the objects (i.e., functions).

2. The implicit CH-BL performance model is binary: running-time

is assumed to be uniform as long as servers are under the load-

bound. 3. The server loads evolve as a result of the actual function

execution and are not just uniformly incremented as in the original

algorithm. Object deletions are also not handled explicitly: we let

the lazily computed load average determine whether a server meets

the load-bound or not.

Importantly, we do not assume complete and consistent state infor-
mation about the servers. Omniscient knowledge of the execution

state of all functions running all servers can certainly be leveraged

effectively to run functions on the most suitable server. However,

such maintaining such global knowledge is expensive and imprac-

tical as far as storage consistency and latency are concerned. Thus,

we are striving for load-balancing policies which are robust to stale,

incomplete, and coarse-grained information about server states. In

the rest of this section, we shall show how the above three limita-

tions of CH-BL can be overcome in FaaS load-balancing settings.

4.5 Incorporating Function Performance
Characteristics

Different running time and performance characteristics of functions

can be incorporated into consistent hashing. The key problem is
to determine when and which function to forward. The forwarding
policies need to be cognizant of the warm and cold running times,

and the sensitivity to load of different functions.

Assume a load-bound of 𝑏, the warm time of a function is 𝑤 ,

and the cold time is 𝑐 (slow-start). The current or the home server

will be “0”, and the next server in the ring that the function may be

forwarded-to will be denoted by “1”. Running it on the “home”/local

server will result in expected time 𝐸 [𝑇0] = (𝑝0𝑤 + (1 − 𝑝0𝑐)𝑆 (𝐿0),
where 𝑝0 is the cache-hit/keep-alive probability, and 𝑆 (𝐿0) is the
slowdown in function if the load on the server is 𝐿0. When a func-

tion in invoked the load balancer has the choice to either run in

on the home server or forward it to the next server, where it is

less likely to be found in the keep-alive cache, because the reuse-

distance is much larger for the servers down the chain. Therefore

we can compute the forwarding regret, 𝐸 [𝑇0]/𝐸 [𝑇1].
The properties of bounded-loads allows us to easily compute

this value. The probability of being forwarded is small, and is 1/𝑏
based on Lemma 4 of [26]. The reuse-distance of the function,

and hence the hit-rate on the original/home server will be larger:

𝑝0 > 𝑝1 ∗ 𝑏. Based on our empirical observation of sub-linear

performance decrease due to load (Section 3.3), in the worst case,

the home server will be overloaded and alternative server will not

be, and hence the ratio of slowdowns, 𝑆 (𝐿0)/𝑆 (𝐿1) > 𝑏. Minimizing

the regret, we get that the function should be forwarded if 𝐿 > 𝑐𝑏/𝑤 .

Thus, the effective load upper-bound is increased by a factor of

cold/warm time, allowing us to run more functions per server. In

our empirical evaluation, we will show that this can significantly

improve performance over plain CH-BL with a function-agnostic

constant load-bound. If the cold and warm times of a function are

not available, then they are assumed to be equal, thus this degrades

to classic function-agnostic bounded-loads.

4.6 Handling Bursts
Functions come in a variety of frequency classes and are also prone

to unpredictable burstiness (i.e., very low inter-arrival-times for a

short duration). Identifying these bursts and both keeping latency

for such “popular” functions low and preventing them from neg-

atively impacting co-located functions is critical. We have found

that handling overload conditions is a key requirement and can

significantly affect the tail latency.

Bursty function invocations result in two main problems. First,

they cause an increase in server load beyond the actual load-bound,

because load is only lazily tracked. The delayed load information

can result in a popular function completely overwhelming a server,

causing load “hotspots” in the cluster. The second problem is that

in extreme cases, the inter-arrival-time is less than the function

latency, causing concurrent invocations. Even if these concurrent

invocations are run on a “local” server with the function present

in the keep-alive cache, there will still be cold-starts, since each

invocation must run in its own container.

Our solution to these two problems caused by bursty invoca-

tions is to detect popular function bursts, “spread” these invoca-

tions around multiple servers to prevent cluster hot-spots, and use

stochastic/random load updates to introduce randomness into the

load-balancing.

4.6.1 Detecting Popular Functions with Spatial Sampling. Our goal
is to detect “popular” functions with low inter-arrival-times, in an

online low-overhead manner. Popularity detection must take into

account the changing invocation frequencies of different functions

over time, and be low-overhead. We identify the top p percentile of

functions by their inter-arrival-times (IAT), or below some explicit

IAT threshold, to reduce unnecessary hyperparamaters.

Our approach is general: we first build a histogram of inter-

arrival-times using sampling, and then query it. We note similarities

with computing reuse-distance histograms, which are the building

block of miss-ratio curves. Reuse-time histograms are a simpler

version of reuse-distances. Recall that reuse distance is the number

of unique objects accessed, whereas inter-arrival-time is simply the

difference in wall-clock times.

Our solution to identifying popular functions and function bursts

is inspired by the popular SHARDS [36] algorithm for building

reuse-distance histograms. Following SHARDS, we randomly sam-

ple invocations to track individual function IATs. This tracking

is simplified by only recording the most recent access time, and

then computing the IAT as an estimated moving average of the

current IAT and 𝑛𝑜𝑤 − 𝑙𝑎𝑠𝑡_𝑎𝑐𝑐𝑒𝑠𝑠 . These values are tracked for

every function, and functions in the top 𝑝𝑡ℎ percentile of IATs are

considered popular. For the sampled functions using spatial hash-

ing, we update their IAT. Note that this approach keeps only a small

Session 6: Cloud Computing and Machine Learning HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

232

number of last-accessed-iat entries in memory: “have-been” popu-

lar functions are naturally evicted from the tracking list. Because

we do not care about reuse-distances, we avoid keeping a tree of

reuse-distances, resulting in a simplified SHARDS-like algorithm

(see Algorithm 1).

Algorithm 1 SHARDS-inspired popular function detection. Func-

tions with the top p percentile of IATs are ’popular’.

1: procedure update_shards_popular(𝑓 𝑢𝑛𝑐, 𝑡𝑖𝑚𝑒)

2: 𝑃 ← 100.0

3: 𝑇 ← 20.0 ⊲ Effective sampling rate

4: 𝑅 ← 𝑇 /𝑃
5: 𝑇𝑖 ← 𝑎𝑏𝑠 (ℎ𝑎𝑠ℎ(𝑓 𝑢𝑛𝑐.𝑛𝑎𝑚𝑒))
6: if 𝑇𝑖 ≤ 𝑇 then
7: if 𝑙𝑎𝑠𝑡_𝑎𝑐𝑐𝑒𝑠𝑠_𝑡𝑖𝑚𝑒𝑠.𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑓 𝑢𝑛𝑐) then ⊲ Already

in our sample set

8: 𝑖𝑎𝑡 ← (𝑡 − 𝑙𝑎𝑠𝑡_𝑎𝑐𝑐𝑒𝑠𝑠_𝑡𝑖𝑚𝑒𝑠 [𝑓 𝑢𝑛𝑐])/𝑅
9: 𝑙𝑎𝑠𝑡_𝑎𝑐𝑐𝑒𝑠𝑠_𝑡𝑖𝑚𝑒𝑠 [𝑓 𝑢𝑛𝑐] = 𝑡

10: 𝑖𝑎𝑡_ℎ𝑒𝑎𝑝.𝑝𝑢𝑠ℎ((𝑖𝑎𝑡, 𝑓 𝑢𝑛𝑐))
11: else ⊲ First access... iat==’inf’

12: 𝑙𝑎𝑠𝑡_𝑎𝑐𝑐𝑒𝑠𝑠_𝑡𝑖𝑚𝑒𝑠 [𝑓 𝑢𝑛𝑐] = 𝑡

13: 𝑖𝑎𝑡_ℎ𝑒𝑎𝑝.𝑝𝑢𝑠ℎ((𝑡/𝑅, 𝑓 𝑢𝑛𝑐))
14: 𝑖𝑎𝑡𝑠_𝑜𝑛𝑙𝑦 ← 𝑖𝑎𝑡_ℎ𝑒𝑎𝑝.𝑣𝑎𝑙𝑢𝑒𝑠 ()
15: 𝑝𝑜𝑝_𝑡ℎ𝑟𝑒𝑠ℎ ← 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 (𝑖𝑎𝑡𝑠_𝑜𝑛𝑙𝑦, 𝑝)

4.6.2 Randomly Updating Stale Loads. Popular functions represent
such a large percentage of invocations yet a small number of func-

tions, that they can be safely spread across many servers without

causing cold starts. A fair load balancing algorithm must spread

popular functions to ensure QoS for less frequent functions. Because

load information is stale, adhering to locality and load can result

in servers facing a herd-effect. Randomization is a powerful strat-

egy to ameliorate such effects, however, we must use it judiciously

because of the strong effects of locality in FaaS load-balancing.

Our solution is to introduce random forwarding (along the ring)

which is proportional to the load of the server, such that popular

functions are forwarded with a higher probability. If the (stale) load

of the server is 𝐿, we update its load by adding gaussian noise with

a mean of the extra anticipated load on the server based on the

staleness and function arrival rate on the server (𝜆). Specifically,

the 𝐿noisy = 𝐿 + N(𝜇 = 𝜆, 𝜎 = 0.1), where N is a Gaussian random

variable. For popular functions, we compare the 𝐿noisy to the load-

bound. For remaining functions, we continue to use the stale load

𝐿. Thus for highly loaded servers “near” the upper-bound, the extra

random noise will result in the popular bursty functions being

forwarded more, to avoid the herd-effect.

4.7 Putting it all together: CH-RLU
Our overall policy, Consistent Hashing with Random Load Updates

(CH-RLU), combines all the previously described techniques and

insights. When a new invocation arrives, we query the popular IAT

threshold to determine what class of function it is. Functions are

distributed via Algorithm 2, which combines the use of SHARDS

for popularity detection, cold and warm times for increasing the ef-

fective load-bound, and noisy loads. We bound the cold/warm ratio

Algorithm 2 Random Load Update Forwarding Function

1: procedure CH-RLU-forward(𝑓 𝑢𝑛𝑐, 𝑠𝑒𝑟𝑣𝑒𝑟, 𝑐ℎ𝑎𝑖𝑛_𝑙𝑒𝑛)
2: 𝑏,𝑏_𝑚𝑎𝑥,𝑚𝑎𝑥_𝑐ℎ𝑎𝑖𝑛_𝑙𝑒𝑛 ← 𝑠𝑦𝑠𝑡𝑒𝑚_𝑝𝑎𝑟𝑎𝑚𝑠

3: if 𝑐ℎ𝑎𝑖𝑛_𝑙𝑒𝑛 > 𝑚𝑎𝑥_𝑐ℎ𝑎𝑖𝑛_𝑙𝑒𝑛 then
4: return least-loaded-server

5: 𝜆 ← 1.0/𝑎𝑣𝑔_𝑖𝑎𝑡 ⊲ Computed from Algo 1

6: 𝐿 = 𝐿𝑜𝑎𝑑 (𝑠𝑒𝑟𝑣𝑒𝑟)
7: if popular(func) then ⊲ Computed from Algo 1

8: 𝐿 = 𝐿𝑜𝑎𝑑 (𝑠𝑒𝑟𝑣𝑒𝑟) + N (𝜇 = 𝜆 𝜎 = 0.1)
9: if 𝐿 < 𝑚𝑖𝑛(𝑐𝑏/𝑤,𝑏_𝑚𝑎𝑥) then
10: server

11: else
12: CH-RLU-forward(func, next(server), chain_len+1)

with a final load upper-bound b_max. The load bound parameters

determine the locality-sensitivity: higher values of b and b_max

increase locality at the risk of resource-contention delays. Similarly,

higher values of 𝑝 results in more aggressive random forwarding

and reduces locality.

Forwarding along the chain has diminishing returns of locality,

and if the function gets forwarded more than max_chain_len times,

we simply run it on the least-loaded server. If the least loaded server

is also overloaded, we drop the function. We have also implemented

a simple PID controller with hysteresis for horizontal scaling, by

using server load averages as the input control signal. This hori-

zontal scaling is conservative, with a large dead-band of 5 minutes,

and scaling is triggered only if the at least 50% of the servers are

overloaded. As we shall show in the empirical evaluation, CH-RLU

significantly reduces the variance in the loads among servers, and

thus is more amenable to this horizontal scaling policy.

5 IMPLEMENTATION
We have implemented our consistent hashing with random load

update (RLU) policy and other load-balancing policies in Open-

Whisk, a popular FaaS system. Our changes amount to more than

1,700 lines of code across many OpenWhisk components, but are

primarily in the load-balancer class. In this section, we describe

major implementation details, as well as key performance optimiza-

tions which significantly improve OpenWhisk performance and

scalability by more than 4×.
Our policies are implemented by modifying the load-balancer

module of OpenWhisk (see Figure 6). CH-RLU is implemented by

modifying the existing OpenWhisk “container sharding” policy,

which also uses consistent hashing, and forwards functions using

only available memory as the load metric. We use OpenWhisk’s ex-

isting consistent hashing implementation, permiting an “apples to

apples” comparison, and also making CH-RLU a “drop-in” replace-

ment for the OpenWhisk default load-balancing. At the invoker

level, we adapt FaasCache’s GreedyDual keep-alive policy, which

increases the keep-alive effectiveness compared to OpenWhisk’s

default non-resource-conserving TTL eviction [15].

The CH-RLU algorithm described in the previous section requires

twomain additional pieces of information from each invoker/server:

the load averages, and the cold/warm running times of functions.

Both of these are periodically (every 5 seconds) captured and stored

Session 6: Cloud Computing and Machine Learning HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

233

Virtual Machine

Virtual Machine

Virtual Machine

Controller

Load
Balancer

Invocation

Redis

Invoker

Function

Invoker

FunctionFunction

Function

Function and system
metrics sent async

Invocation routed
to Invoker

Invocation enters
system at Controller

Invocation executed
on Invoker

Function

Figure 6: System diagram of relevant OpenWhisk compo-
nents and communication used to schedule and run func-
tion invocations.

in a centralized redis key-value store. The load-balancer in the

controller reads these asynchronously: working with stale and

inconsistent metrics is our key design goal. The default load-bound,

b, is 1.2, and the max load, b_max is 6. Popularity threshold is set to

20%. We did not observe performance to be very sensitive to these

parameters, and thus do not need to auto-tune them, and they are

suitable as user-inputs.

5.1 Performance Optimizations For
OpenWhisk

Since our goal is to run functions under high load, we ran into a

large number of OpenWhisk performance and scalability bottle-

necks. We found default OpenWhisk to be almost unusably slow

and unstable even under reasonable load. We present their details

and our actions to overcome them, hoping that the fast-growing

serverless computing research field can benefit from our lessons.

In our experience, the primary source of scalability bottlenecks

is running Docker containers concurrently. We found significant

contention in dockerd, Docker’s control daemon which handles all

the container lifecycle events. Even at moderate loads (normalized

server load average close to 1), high dockerd contention can increase

tail latencies by several minutes!
Currently, OpenWhisk pauses each container after function

execution, which prevents it from being scheduled by the CPU. It

then resumes the container before running the next invocation of

the same function (assuming a warm start). Thus each invocation

requires these two additional (pause/resume) events to be handled

by dockerd, which results in significant lock contention. Because of

the FaaS programming model, the pausing is not necessary, since

nothing in the container can run after a function has returned.

Therefore, we remove these redundant pause/resume operations to

reduce dockerd contention. This reduces the OpenWhisk overhead

by 0.2 seconds per-invocation on average. More importantly, by

reducing dockerd contention, we were able to run a much larger

number of concurrent functions.

An even larger source of scalability bottleneck isnetwork names-

pace creation time. Using the default bridge networking requires

each invocation to create a new TUN/TAP network interface. We

found this to be a very expensive operation because of Linux net-

work stack overheads (several 100 ms), and because of dockerd’s

userspace lock (futex) contention for its networking database. We

found that as the historical total number of containers launched

grows, so does the size of the network-interface database. Dockerd

reads and updates this database under the critical section, and the

larger database results in higher lock contention. As a result, we

were unable to use VMs/servers with more than 4 CPUs after 20

minutes of sustained load, since the dockerd contention resulted in

many functions timing out (timeout was 5 minutes)!

We sidestep this problem by not using bridge networking, but

instead using Docker’s host network option and assigning each

container a unique port on the host. Implementing the network

change required updating the OpenWhisk runtimes used to wrap

functions to monitor their specified port. This change allowed us

to run functions on larger invokers and under more sustained load,

and eliminated most timeouts.

Finally, after a certain request rate threshold, we found the de-

fault nginx OpenWhisk frontend would crash and return 502 BAD
GATEWAY for all URLs. We did not discover the cause of this prob-

lem, and simply bypassed it by letting function invocations to com-

municate with the controller/load-balancer directly.

CPU limits. OpenWhisk uses the --cpu-shares option to set con-

tainer CPU priority. This has an unintended consequence of allow-

ing functions to use more than one CPU core while running. Major

FaaS providers constrain functions to a single core unless they have

extremely high memory allocations (<1 GB). In order to stay in

line with providers and prevent outsized impact on system load

from some functions, we use the --cpus flag instead to assign each

function no more than one CPU.

Together, these performance optimizations have allowed us to

run OpenWhisk on invokers that are 4× larger, and serve more than

6× the load, without dropping functions due to timeouts. We plan

to upstream all these performance optimizations in OpenWhisk to

provide a higher-performance and lower-jitter platform for FaaS

research and production deployments.

6 EVALUATION
In our evaluation we present the effectiveness of our load-balancing

policy (RLU) using our OpenWhisk implementation and a simula-

tion implementation of the same policies. Our primary goal is to

quantify the impact of different load-balancing policies on function

latencies under varying load conditions.

6.1 Evaluation Environment
HW and SW Config. We run OpenWhisk in a distributed mode

across 9 VMs. 8 invokers are each in their own VM with 16 vCPUs

and assigned to use 32 GB RAM for hosting functions. The final VM

hosts the controller, load-balancer, and remaining services, with

12 vCPUs and 50 GB RAM to ensure it is not a bottleneck. Metrics

about system load were captured every 5 seconds by calling uptime
on each invokers VM and normalized by the number of CPUs on

that system. All latency information was recorded by the client,

timing the HTTP request until the request completed. We make no

Session 6: Cloud Computing and Machine Learning HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

234

CH-BL LL RLU OW+GD OW+TTL
LoadBalancing Policy

0

1

2

3

4

5

Gl
ob

al
 L

at
en

cy
 In

cr
ea

se
 %

(a) Global Latency Impact

CH-BL LL RLU OW+GD OW+TTL
LoadBalancing Policy

0

1000

2000

3000

4000

5000

In
vo

ca
tio

ns

Cold
Warm

(b) Invocation Throughput

Figure 7: Latency and throughput under low-load. Locality-
agnostic least-loaded policy has more cold starts and a
higher impact on latency.

policy changes to the invoker eviction policy, but use the changes

from FaasCache [15] for eviction decisions on the invoker.

Contenders. In addition to our proposed load balancing policy,

we compare against the default OpenWhisk load balancing policy

(described in Section 2.3) with GreedyDual (OW+GD) and 10minute

Time-To-Live (OW+TTL) eviction policies, and implement two

other load balancing polices for comparison: least loaded (LL), and

consistent hashing with bounded loads using stale load-averages

(CH-BL). For CH-RLU and CH-BL, we set the max_chain_len=3, a

high max load bound, b_max= 6, and a popularity threshold, p=20%.

We did not find performance to be particularly sensitive to the load-

bound: the function latencies showed little changes across load

upper-bounds of [2 − 8]. This is also shown earlier in our latency

vs. load analysis in Section 3.3.

Metrics. We examine three main metrics: cold starts, the global

average latency across all invocations, and the evenness with which

load is spread amongst workers. The first two directly and obviously

relate to end user service quality but the third is more intricate.

Providers pay for servers to run functions on and don’t want those

resources going unused and therefore wasted. Equally, a server

that is overloaded (not enough CPU or memory resources) will

cause a spike in end user latency due to contention of queueing. To

quantify the global impact on latency from placement decisions,

we normalize each invocation’s latency by the ideal (minimum)

latency, take the per-function mean of these, multiply each mean

by the percentage of invocations that function had in the whole

trace, and finally take the mean of those function latency means.

This is essentially a weighted average of latency-increase (i.e., slow-

down). It gives some balance between outcomes, for example, a

rare function may get several bad placement decisions and thus

increase the global latency, or a very common function generally

has warm hits and does not impact latency.

Workload.We convert 12 functions from FunctionBench [22] to

run on OpenWhisk. To create a more realistic variety of functions,

we create ten copies of each function with unique names, giving us

120 unique functions. Each function clone is invoked at different

frequencies mimicing the arrival frequencies of the Azure trace [30].

Our load is generated using the closed-loop load generation tool

Locust [24] to invoke functions, running 20 threads for low load, and

120 for heavy load stressing. Locust cannot easily have dedicated

threads to invoke each function, so we convert the “frequencies”

into weights and use those to randomly choose what function

will be invoked next. Each thread will iteratively invoke a random

function, and after its completion wait 0-1 seconds before invoking

another function. Unless stated otherwise all experiments are run

with the above settings, under heavy load, for 30 minutes, and

results are the average of 4 runs.

6.2 Load-balancing Performance
When we run them under light load in Figure 7, the policies that

use a locality mechanism are essentially identical. The load on any

one server is never high enough to impact co-located functions and

we never have to forward invocations and incur excess cold starts,

giving us a "lower bound" on load balancing. The low 1-2% latencies

in Figure 7a we see here are due to initial cold starts for functions

and the varied overhead imparted by the system analyzed earlier.

The least loaded policy is significantly worse as it’s lack of locality

causes excessive cold starts as evidenced by the high number of

cold starts in its invocation results detailed in Figure 7b.

Next we run the policies under our heavy load scenario, and get

a clear distinction between how each of them performs. The two

versions of OpenWhisk in Figure 8a only increase latency by 11%

and 14% respectively which is rather good. They cannot complete

with RLU whos increase is less than half of that, a tiny 5% impact

on global latency. CH-BL and least loaded increase global latency

by over 40%, showing terrible performance in that metric and on

invocation throughput.

The wide gap between policies can be understood by comparing

the load variance between their workers (Figure 8c). OpenWhisk’s

default policy is to only move a function to another server if the

“home” one does not have available memory to run it. While very

good for locality (getting fewer cold starts than RLU in Fig 8b),

it creates severe imbalance on the worker loads. A few workers

grow to extremely high load and their functions suffer, while others

are mostly empty. RLU intelligently forwards invocations when a

worker is near overload, keeping load variance lowwhile protecting

locality. Least loaded actually does the best at keeping equal load

amongst workers, but at the cost of poor locality.

6.2.1 Handling Bursty Traffic. Next we take two different bursty

workloads to see how the polices handle changes in invocation pat-

terns. The first uses the same closed-loop load generation but adjust

the weights by which functions are invoked. Every 30 seconds two

of the top weighted functions are chosen to become bursty, and

have their weights set much higher. At the end of a burst their

weights are returned to normal and another two functions are cho-

sen. As can be seen in Figure 9a our policy acheives a 17% lower

impact on global latency than OpenWhisk with GreedyDual. RLU

represents a 60% reduction to latency over OpenWhisk with its

default TTL backend. The more advanced eviction decision choices

have a clear effect on improving the system even when the load

balancer does not optimize for it. The longer running functions

in our workload have a larger effect on system load and the load

balancer must be aware of this impact and either spread that heavy

popular function around or move other functions off of that server.

Again, OpenWhisk does not take load into account and severely

overloads some servers while languishing others. We see more sky-

high load variances from this bursty workload in Figure 9b. Policies

Session 6: Cloud Computing and Machine Learning HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

235

CH-BL LL RLU OW+GD OW+TTL
LoadBalancing Policy

0

10

20

30

40

50

Gl
ob

al
 L

at
en

cy
 In

cr
ea

se
 %

(a) Latency

CH-BL LL RLU OW+GD OW+TTL
LoadBalancing Policy

0

5000

10000

15000

In
vo

ca
tio

ns

Cold
Warm

(b) Throughput

0 5 10 15 20 25 30
Time (min)

0

20

40

60

80

Lo
ad

 V
ar

ia
nc

e

CH-BL
LL
RLU
OW+GD
OW+TTL

(c) Server Load variance

Figure 8: At high server loads, our RLU policy reduces average latency by 2.2x at higher throughput, compared to OpenWhisk’s
default policy. It does so by keeping cold-starts and load-variances low.

CH-BL LL RLU OW+GD OW+TTL
LoadBalancing Policy

0

10

20

30

40

50

60

Gl
ob

al
 L

at
en

cy
 In

cr
ea

se
 %

(a) Global Latency Impact

0 5 10 15 20 25 30
Time (min)

0

20

40

60

Lo
ad

 V
ar

ia
nc

e

CH-BL
LL
RLU
OW+GD
OW+TTL

(b) Worker Load Variance

Figure 9: RLU improves latency by 10% compared to Open-
Whisk under bursty load conditions, while keeping a low
worker load variance.

CH-BL LL RLU OW+GD
LoadBalancing Policy

0

50

100

150

200

250

Gl
ob

al
 L

at
en

cy
 In

cr
ea

se
 %

Figure 10: Global latency impact under a 30-minute long ris-
ing burst load from an open-loop generator. RLU reduces
latency by 17% compared to OpenWhisk.

that monitor load, our RLU, CH-BL, and least loaded keep tighter

control on load variance.

The second busrty load is a 30 minute long-rising burst, starting

with just a few invocations per second and reaching a sustained

peak of roughly 18 invocations per second at roughly 25 minutes.

We generated this load with a custom open-loop load tool that

fires invocations but does not block waiting for completion. New

invocations are continually fired in a preset pattern of function

types and times. The global latency impact of this final scenario

can be seen in Figure 10. Only the final 10 minutes of the workload

place the system under extreme load, and the differences between

policies reflect this. CH-BL and least loaded cannot keep up with

0 5 10 15 20
Time (min)

0

2

4

6

8

10

No
rm

al
ize

d
La

te
nc

y Invoker Start

Figure 11: The average normalized function latency over
time for a dynamic workload. New invokers are launched
at the dashed lines, keeping the latency in check.

the suddenly changing load, causing a latency increase of over 100%

and 200% respectively. RLU’s 25% increase in global latency is still

significantly better, 30% lower, than OpenWhisk. Our policy is able

to make ideal choices for function placement under a varient of

realistic workload scenarios.

6.2.2 Scaling. Lastlywewant to demonstrate how our policy reacts

to scaling the number of workers as demand increases. We start

our cluster with only 3 invokers and increase applied load up to

the heavy load scenario above. Rather than starting with the 120

threads of the heavy load with this smaller cluster, we adjust the

scenario to start with a single thread and add a new one every 6

seconds, reaching the final thread count at about minute 12.

As the average invoker load increases, the controller activates a

new worker and starts directing work towards it. New workers are

kept under the load bound of 6 and see load similar to our previous

experiments that had a constant load. Figure 11 shows the function

latencies (normalized to respective min. warm times). Preceeding

each worker being started is a rise in overall latency, which then

falls after the invoker has come online and starts taking additional

load. Thus, our horizontal scaling is able to dynamically keep the

function latency in check, even though it only uses coarse-grained

server load metrics.

6.2.3 Load-balancer Overhead. More complicated routing deci-

sions naturally mean they are more computationally expensive to

perform. We have been able to keep balancing decisions to roughly

1 ms thanks to the optimizations described in Section 5. Even so,

Session 6: Cloud Computing and Machine Learning HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

236

least_load CH_BL CH_RLU greedy

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sl
ow

do
wn

Weighted Average

Figure 12: [Simulated] Function latency distribution.

least_load CH_BL CH_RLU greedy0

1

2

3

4

%
 o

f T
ot

al
 In

vo
ca

tio
ns

Dropped
Cold

Figure 13: [Simulated] Cold and dropped functions.

RLU is on significantly slower making individual routing decisions,

taking on average 1242.6𝜇s to OpenWhisks’ 472.3𝜇s. Such times

represent a fraction of the time spent per-request by the system

and is made up for by our more optimal placements.

6.3 Simulation Evaluation
To investigate the performance of various load-balancing policies

at larger scales, we use a simulation approach. We have developed

a discrete-event simulator, which plays a function workload trace,

and emulates the various aspects of function execution and slow-

down: slow/warm starts, slowdown due to concurrent processing

by emulating a G/G/k queueing system on each server, and var-

ious load metrics (emulating Linux exponentially decaying load

averages, stale loads, real-time loads, etc.). The simulator allows us

to implement different policies using information that would not

otherwise be available on a real system: accurate function cold and

warm times, instant load information, etc. The function running

times are computed by adding the actual provider-captured run-

ning times to the OpenWhisk and Docker startup overheads that

are empirically measured and modeled. This, when combined with

queueing delays, captures the overall slowdown due to concurrent

processing. The simulator is implemented in Python in about 3,000

lines of code.

We run the Azure trace with 1000 randomly chosen functions

spanning almost a million invocations, and compare different load-

balancing policies. This workload is highly bursty and is character-

ized by the Figures in Section 3. We have implemented a “online

greedy optimal” policy that considers all servers when running

functions, by picking the server with the lowest expected running

time (based on Section 4.5). This would be impractical and un-

realistic to implement, since it needs accurate information about

every function’s keep-alive status on every server, and an accurate

4 8 12 16 20 24
Num Servers

1.5

2.0

2.5

3.0

3.5

Sl
ow

do
wn

greedy
least_load
CH_RLU

Figure 14: [Simulated] Function latencies as cluster size is
increased. Least-loaded performs worse because its locality
and cold-starts become worse as more servers are added.

model of function performance at various loads. Nevertheless, it

provides an optimistic baseline: our consistent-hashing based policy

(𝐶𝐻 − 𝑅𝐿𝑈) is significantly simpler, only considers a small subset

of servers, and does not require omniscient cluster state.

Figure 12 compares this greedy policy with a locality-agnostic

“least-loaded” policy that is popular in web-clusters, and the two

consistent-hashing based policies. The figure shows the function

slowdown factor for each function, as well as the global average

slowdown. Slowdown is defined as the ratio of function’s execution

time to its base warm time without any system overhead, resource

contention, or queueing delays. Most functions do poorly with the

least-loaded policy: the median function slowdown is almost 4×,
primarily because of high cold-starts. Figure 13 compares the cold

and dropped statistics for the various policies.

Returning to Figure 12, both CH-BL and CH-RLU have compa-

rable performance, with a median slowdown of 2.4. Finally, and

surprisingly, the omniscient greedy policy performs poorly: with

the global slowdown approaching 7. The primary reason for this

is because of the bursty nature of the workload: the greedy policy

tends to pick the server with the least-loaded server that can run the

warm function. However because of stale load information, we see

a herd effect on the server, and this causes extremely high resource

contention and latency, even though the number of cold-starts is

small (compared in Figure 13).

Finally, we investigate performancewhen the cluster size changes.

Figure 14 shows the slowdown for the three policies when the

number of servers is increased. Importantly, the total number of

computing and memory in the cluster is kept constant at 256 CPUs

and 512 GB, and the size of the individual servers is changed. Thus

4 servers with 64 CPUs are compared with 8 servers with 32 CPUs,

etc. This experiment is intended to capture the effects of locality:

smaller number of servers may have a higher hit-rate, and a more

even load-spread.

Figure 14 shows how the function slowdown for both CH-RLU

and greedy decays as the number of servers is increased. This is be-

cause larger servers see heavier lock and other resource contention,

and thus while they may exhibit better locality, the load-induced

slowdown dominates. This has important ramifications for large

FaaS providers, since they can continue using smaller servers for

running functions, and expands the utility of small deflatable/har-

vestable VMs for running colocated functions [39].

Session 6: Cloud Computing and Machine Learning HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

237

CH-RLU reduces the function slowdown by 20% compared to the

greedy approach, across a wide range of cluster configurations in

Figure 14. Interestingly, least-loaded’s performance worsens with

increasing number of servers and fragmentation. The main culprit

is worsening locality. With a small number of servers, least-loaded

can get “lucky” and score a keep-alive cache-hit. These fortuitous

warm-starts get less probable with an increasing number of servers.

7 RELATEDWORK
FaaSResourceManagement.The initialization overheads of server-
less functions and their repeated invocations have spawned a great

deal of research into optimizing their resource management. Recent

surveys [14, 18, 23, 25, 29] provide an overview of the challenges

and solutions in this very active research area.

Reducing the overhead of serverless functions through various

systems and virtualization-level mechanisms and optimizations [3,

4, 6, 12, 13, 35]. Locality for FaaS resource management has been

explored in the form of function keep-alive policies [30]. Our work

builds on and uses the caching-based Greedy-Dual policy from

FaasCache [15]. Single-server environments have been the focus of

these mechanisms and policies: we have made an initial attempt to

understand their interactions in a distributed cluster context. Inter-

function dependencies can also be used for predictive resource

management and reducing function communication and startup

costs [10, 16, 31]: incorporating these policies into our load-balancer

is part of future work.

FunctionLoadBalancing: Package-aware load balancing [5] iden-
tifies and uses function code dependencies (software packages) as

an important source of data locality. While this is an important fac-

tor, we focus on in-memory locality of kept-alive functions, since

memory capacity is much smaller than permanent storage and

caching functions in memory has a very large performance impact.

CPU contention and interference is a major source of performance

bottlenecks for co-located functions, and adjusting CPU-shares

using cgroups can provide significant benefits [32–34]. The load-

locality tradeoff we explore is complementary to these CPU sched-

uling optimizations. The repetitive nature of functions and their

workflows can also be used to improve resource utilization and

latency [9, 19, 28, 37]: our load-balancer is stateless for the sake of

simplicity and can be enhanced with these techniques if necessary.

The tradeoff between locality and performance has also been

explored in the context of delay scheduling [38] for data-parallel

applications like MapReduce. Load-balancing is seen as a “dispatch”

problem in queueing theory, and the FaaS cluster system most

closely approximates G/G/PS, since the arrivals and service times

are not markovian. Techniques such as “join the shortest queue”,

and “least work left” [17] have been shown to be effective. The

online-greedy policy evaluated in the previous section closely ap-

proximates least-work-left. However, it is difficult to implement in

practice since the running times of functions is hard to predict due

to their volatile arrival distribution mixtures and high variances in

running time due to various system interference effects.

8 CONCLUSION
In this paper we have explored the tradeoff between locality and

load for serverless functions. Our CH-RLU policy can tackle the

challenges of function heterogeneity, workload skew, bursty work-

loads, and stale loads. We enhance consistent hashing to yield a

simple and practical load-balancing policy. Empirical evaluation

shows substantial improvements in function latency (by more than

2×) compared to current OpenWhisk.

REFERENCES
[1] Docker. https://www.docker.com/, June 2015.

[2] Apache OpenWhisk: Open Source Serverless Cloud Platform. https://openwhisk.

apache.org/, 2020.

[3] Agache, A., Brooker, M., Iordache, A., Liguori, A., Neugebauer, R., Piwonka,

P., and Popa, D.-M. Firecracker: Lightweight virtualization for serverless appli-

cations. In 17th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 20) (2020), pp. 419–434.

[4] Akkus, I. E., Chen, R., Rimac, I., Stein, M., Satzke, K., Beck, A., Aditya, P., and

Hilt, V. SAND: Towards High-Performance Serverless Computing. USENIX ATC
(2018), 14.

[5] Aumala, G., Boza, E., Ortiz-Avilés, L., Totoy, G., and Abad, C. Beyond

load balancing: Package-aware scheduling for serverless platforms. In 2019
19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID) (2019), pp. 282–291.

[6] Carreira, J., Kohli, S., Bruno, R., and Fonseca, P. From warm to hot starts:

leveraging runtimes for the serverless era. In Proceedings of the Workshop on Hot
Topics in Operating Systems (2021), pp. 58–64.

[7] Chen, J., Coleman, B., and Shrivastava, A. Revisiting consistent hashing with

bounded loads. In Proceedings of the AAAI Conference on Artificial Intelligence
(2021), vol. 35, pp. 3976–3983.

[8] Cherkasova, L. Improving WWW Proxies Performance with Greedy-Dual-Size-

Frequency Caching Policy. Tech. rep., HP Labs Technical Report 98-69 (R.1),

1998.

[9] Daw, N., Bellur, U., and Kulkarni, P. Xanadu: Mitigating cascading cold starts

in serverless function chain deployments. In Proceedings of the 21st International
Middleware Conference (New York, NY, USA, 2020), Middleware ’20, Association

for Computing Machinery, pp. 356––370.

[10] Daw, N., Bellur, U., and Kulkarni, P. Speedo: Fast dispatch and orchestration of

serverless workflows. In Proceedings of the ACM Symposium on Cloud Computing
(2021), pp. 585–599.

[11] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A.,

Pilchin, A., Sivasubramanian, S., Vosshall, P., and Vogels, W. Dynamo:

Amazon’s highly available key-value store. ACM SIGOPS operating systems
review 41, 6 (2007), 205–220.

[12] Du, D., Yu, T., Xia, Y., Zang, B., Yan, G., Qin, C., Wu, Q., and Chen, H. Catalyzer:

Sub-millisecond startup for serverless computing with initialization-less booting.

In Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (2020), pp. 467–481.

[13] Dukic, V., Bruno, R., Singla, A., and Alonso, G. Photons: Lambdas on a diet.

In Proceedings of the 11th ACM Symposium on Cloud Computing (2020), pp. 45–59.

[14] Eismann, S., Scheuner, J., Van Eyk, E., Schwinger, M., Grohmann, J., Herbst,

N., Abad, C. L., and Iosup, A. Serverless applications: Why, when, and how?

IEEE Software 38, 1 (2020), 32–39.
[15] Fuerst, A., and Sharma, P. Faascache: Keeping serverless computing alive with

greedy-dual caching. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (New
York, NY, USA, 2021), ASPLOS 2021, Association for Computing Machinery,

pp. 386—-400.

[16] Gunasekaran, J. R., Thinakaran, P., Nachiappan, N. C., Kandemir, M. T., and

Das, C. R. Fifer: Tackling resource underutilization in the serverless era. In

Proceedings of the 21st International Middleware Conference (2020), pp. 280–295.
[17] Gupta, V., Balter, M. H., Sigman, K., and Whitt, W. Analysis of join-the-

shortest-queue routing for web server farms. Performance Evaluation 64, 9-12
(2007), 1062–1081.

[18] Hassan, H. B., Barakat, S. A., and Sarhan, Q. I. Survey on serverless computing.

Journal of Cloud Computing 10, 1 (2021), 1–29.
[19] Hunhoff, E., Irshad, S., Thurimella, V., Tariq, A., and Rozner, E. Proac-

tive serverless function resource management. In Proceedings of the 2020 Sixth
International Workshop on Serverless Computing (2020), pp. 61–66.

[20] Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., and Lewin, D.

Consistent hashing and random trees: Distributed caching protocols for relieving

hot spots on the world wide web. In Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing (1997), pp. 654–663.

[21] Karger, D., Sherman, A., Berkheimer, A., Bogstad, B., Dhanidina, R.,

Iwamoto, K., Kim, B., Matkins, L., and Yerushalmi, Y. Web caching with

consistent hashing. Computer Networks 31, 11-16 (1999), 1203–1213.

Session 6: Cloud Computing and Machine Learning HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

238

https://www.docker.com/
https://openwhisk.apache.org/
https://openwhisk.apache.org/

[22] Kim, J., and Lee, K. FunctionBench: A Suite of Workloads for Serverless Cloud

Function Service. In 2019 IEEE 12th International Conference on Cloud Computing
(CLOUD) (July 2019), pp. 502–504. ISSN: 2159-6182.

[23] Li, Z., Guo, L., Cheng, J., Chen, Q., He, B., and Guo, M. The serverless computing

survey: A technical primer for design architecture. ACM Computing Surveys (Jan
2022).

[24] Locust. Locust: A modern load testing framework. https://locust.io/.

[25] Mampage, A., Karunasekera, S., and Buyya, R. A holistic view on resource man-

agement in serverless computing environments: Taxonomy, and future directions.

arXiv preprint arXiv:2105.11592 (2021).
[26] Mirrokni, V., Thorup, M., and Zadimoghaddam, M. Consistent hashing with

bounded loads. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms (2018), SIAM, pp. 587–604.

[27] Nygren, E., Sitaraman, R. K., and Sun, J. The akamai network: a platform for

high-performance internet applications. ACM SIGOPS Operating Systems Review
44, 3 (2010), 2–19.

[28] Przybylski, B., Żuk, P., and Rzadca, K. Data-driven scheduling in serverless

computing to reduce response time. arXiv preprint arXiv:2105.03217 (2021).

[29] Raza, A., Matta, I., Akhtar, N., Kalavri, V., and Isahagian, V. Sok: Function-

as-a-service: From an application developer’s perspective. Journal of Systems
Research 1, 1 (2021).

[30] Shahrad, M., Fonseca, R., Goiri, , Chaudhry, G., Batum, P., Cooke, J., Lau-

reano, E., Tresness, C., Russinovich, M., and Bianchini, R. Serverless in the

Wild: Characterizing and Optimizing the Serverless Workload at a Large Cloud

Provider. arXiv:2003.03423 [cs] (June 2020). arXiv: 2003.03423.
[31] Shen, J., Yang, T., Su, Y., Zhou, Y., and Lyu, M. R. Defuse: A dependency-guided

function scheduler to mitigate cold starts on faas platforms. In 2021 IEEE 41st
International Conference on Distributed Computing Systems (ICDCS) (2021), IEEE,
pp. 194–204.

[32] Suresh, A., and Gandhi, A. Fnsched: An efficient scheduler for serverless

functions. In Proceedings of the 5th InternationalWorkshop on Serverless Computing
(2019), pp. 19–24.

[33] Suresh, A., and Gandhi, A. Servermore: Opportunistic execution of serverless

functions in the cloud. In Proceedings of the ACM Symposium on Cloud Computing
(2021), pp. 570–584.

[34] Suresh, A., Somashekar, G., Varadarajan, A., Kakarla, V. R., Upadhyay,

H., and Gandhi, A. Ensure: Efficient scheduling and autonomous resource

management in serverless environments. In 2020 IEEE International Conference
on Autonomic Computing and Self-Organizing Systems (ACSOS) (2020), pp. 1–10.

[35] Ustiugov, D., Petrov, P., Kogias, M., Bugnion, E., and Grot, B. Benchmarking,

analysis, and optimization of serverless function snapshots. In Proceedings of
the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (2021), pp. 559–572.

[36] Waldspurger, C. A., Park, N., Garthwaite, A., and Ahmad, I. Efficient MRC

construction with SHARDS. In 13th USENIX Conference on File and Storage
Technologies (FAST 15) (2015), pp. 95–110.

[37] Yu, H., Irissappane, A. A., Wang, H., and Lloyd, W. J. Faasrank: Learning to

schedule functions in serverless platforms. In 2021 IEEE International Conference
on Autonomic Computing and Self-Organizing Systems (ACSOS) (2021), IEEE,
pp. 31–40.

[38] Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., and

Stoica, I. Delay scheduling: a simple technique for achieving locality and fairness

in cluster scheduling. In Proceedings of the 5th European conference on Computer
systems (2010), pp. 265–278.

[39] Zhang, Y., Goiri, I. n., Chaudhry, G. I., Fonseca, R., Elnikety, S., Delimitrou,

C., and Bianchini, R. Faster and cheaper serverless computing on harvested

resources. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles (New York, NY, USA, 2021), SOSP ’21, Association for Computing

Machinery, p. 724–739.

Session 6: Cloud Computing and Machine Learning HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

239

https://locust.io/

	Abstract
	1 Introduction
	2 Background
	2.1 FaaS Function Execution
	2.2 Load Balancing
	2.3 Consistent Hashing

	3 Challenges In FaaS Load-balancing
	3.1 Function Heterogeneity and Skew
	3.2 Bursty Invocations
	3.3 Function Performance and Server Load

	4 Load-aware Consistent-Hashing
	4.1 Tradeoff between Locality and Load
	4.2 Key Principle: Load-based Forwarding
	4.3 Server Load Information
	4.4 Why CH-BL Is Insufficient
	4.5 Incorporating Function Performance Characteristics
	4.6 Handling Bursts
	4.7 Putting it all together: CH-RLU

	5 Implementation
	5.1 Performance Optimizations For OpenWhisk

	6 Evaluation
	6.1 Evaluation Environment
	6.2 Load-balancing Performance
	6.3 Simulation Evaluation

	7 Related Work
	8 Conclusion
	References

